正在加载图片...
尹升华等:次生硫化铜矿制粒试验 ·1133· 矿粉较为均匀的分布在矿堆内,对浸矿效果影响较 rosity during heap leaching.Hydrometallurgy,2017,171:33 小.浸矿后期(15~45d)由于矿粉随着浸出液转移 [3]Hoummady E,Golfier F,Cathelineau M,et al.A study of urani- 到堆体底部,导致大量浸矿盲区出现,在该区域内溶 um-ore agglomeration parameters and their implications during heap leaching.Miner Eng,2018,127:22 液处于非饱和状态,空气不易流通,氧气含量低,导 [4]Yang C R.Qin W Q,Lai S S,et al.Bioleaching of a low grade 致低细菌数量(细菌数量峰值3.73×10mL-1)和 nickel-copper-cobalt sulfide ore.Hydrometallurgy,2011,106(1- 低铜浸出率2)],矿堆底部板结现象如图8所示. 2):32 [5]Ahmadi A,Khezri M,Abdollahzadeh A A,et al.Bioleaching of copper,nickel and cobalt from the low grade sulfidie tailing of Golgohar Iron Mine,Iran.Hydrometallurgy,2015,154:1 [6]Hu B,Yi Y,Liang C,et al.Experimental study on particles ag- glomeration by chemical and turbulent agglomeration before elec- trostatic preeipitators.Pouder Technol,2018,335:186 [7]Wollbomn T,Schwed M F,Fritsching U.Direct tensile tests on particulate agglomerates for the determination of tensile strength and interparticle bond forces.Adr Pouder Technol,2017,28(9): 2177 [8]Vo TT,Mutabaruka P,Nezamabadi S,et al.Mechanical strength 图8矿堆底部板结.(a)A组:(b)B组 of wet particle agglomerates.Mech Res Commun,2018,9:1 Fig.8 Hardening phenomenon of heap bottom:(a)group A;(b) [9]Luo Y,Wen J K.Wu B,et al.Acid agglomeration and mecha- nism analysis of a low-grade oxide-sulfide mixed copper ore. group B Chin JEng,2017,39(9):1321 (罗毅,温建康,武彪,等.低品位氧硫混合铜矿的酸性制粒 3结论 及机理.工程科学学报.2017,39(9):1321) [10]Zhang Y B,Zhou Y L,Jiang T,et al.Applications of MHA (1)通过试验对SFS-0、SFS-1、SFS-2、SFS-3、 binder in oxidized pellets preparation from vanadium,titanium- 水泥、硅酸钠、半水石膏以及阳离子型聚丙烯酰胺8 bearing magnetite concentrates.J Cent South Unin Sci Technol, 种制粒黏结剂进行比较,结果表明:黏结剂的黏结效 2012.43(7):2459 果依次为SFS-2>SFS-3>水泥>半水石膏>SFS- (张元波,周友连,姜涛,等.MHA黏结剂在钒钛磁铁矿氧 化球团制备中的应用.中南大学学报:自然科学版,2012, 1>SS-0>硅酸钠>阳离子型聚丙烯酰胺.添加 43(7):2459) SFS-2黏结剂时,矿粉制粒效果最佳,其对应的矿团 [11]Xie X L,Duan T,Zheng F Q,et al.Study of magnetite oxidized 湿强度为94.62%,抗压强度为417.44N,酸浸维持 pellet prepared by modified composite binder.Met Mine,2018 完好时间超过25d. (1):79 (2)正交制粒试验结果显示:各个影响因素对 (谢小林段婷,郑富强,等.改性复合黏结剂制备磁铁矿氧 矿团的影响排序依次为:黏结剂质量分数>加酸量 化球团研究.金属矿山,2018(1):79) [12]Li C X.Wang FF,Bai Y,et al.Experimental study on prepara- >制粒喷水量.其中黏结剂质量分数的影响最为 tion of pellet binder by purified Ca-bentonite.Bull Chin Ceram 显著 Soc,2018,37(2):672 (3)通过试验得到SFS-2黏结剂对细菌生长 (李彩霞,王飞飞,白阳,等.钙基膨润土提纯制备球团黏结 影响有限,矿粉制粒后通过提高筑堆内孔隙率与渗 剂试验.硅酸盐通报,2018,37(2):672) 透系数,易于空气流通,增加氧气含量以及增大矿 [13]Jia J H,Han H L,Duan D P,et al.Effect of different binder 石、矿团和溶液的接触面积,提高主要浸矿细菌生长 addition on strength of carbon-containing pelletized blast fumace dusts.Iron steel Van Tit,2013.34(6):29 速率,进而促进硫化铜矿的浸出. (贾继华,韩宏亮,段东平,等。黏结剂对高炉灰含碳球团强 度的影响.钢铁钒钛,2013,34(6):29) 参考文献 [14]Yin Z X.Li X C.Bai Y,et al.Study on production of pellet by compound binder prepared with purified bentonite.Met Mine, [1]Quaicoe I,Nosrati A,Skinner W,et al.Agglomeration and col- 2018(4):126 umn leaching behaviour of goethitic and saprolitic nickel laterite (殷志祥,李秀晨,白阳,等.提纯膨润土制备复合黏结剂用 ores.Miner Eng,2014,65:1 于生产球团试验.金属矿山,2018(4):126) [2]Hoummady E,Golfier F,Cathelineau M,et al.A multi-analytical [15]Wu X,Peng X M,Chen Y H.New high efficient adhesive iron approach to the study of uranium-ore agglomerate structure and po- concentrate oxidized pellets experiment.Mod Min,2016(9):78尹升华等: 次生硫化铜矿制粒试验 矿粉较为均匀的分布在矿堆内,对浸矿效果影响较 小. 浸矿后期(15 ~ 45 d)由于矿粉随着浸出液转移 到堆体底部,导致大量浸矿盲区出现,在该区域内溶 液处于非饱和状态,空气不易流通,氧气含量低,导 致低细菌数量(细菌数量峰值 3郾 73 伊 10 8 mL - 1 )和 低铜浸出率[21] ,矿堆底部板结现象如图 8 所示. 图 8 矿堆底部板结 郾 (a) A 组;(b) B 组 Fig. 8 Hardening phenomenon of heap bottom: ( a) group A; ( b) group B 3 结论 (1)通过试验对 SFS鄄鄄0、SFS鄄鄄1、SFS鄄鄄2、SFS鄄鄄3、 水泥、硅酸钠、半水石膏以及阳离子型聚丙烯酰胺 8 种制粒黏结剂进行比较,结果表明:黏结剂的黏结效 果依次为 SFS鄄鄄2 > SFS鄄鄄3 > 水泥 > 半水石膏 > SFS鄄鄄 1 > SFS鄄鄄0 > 硅酸钠 > 阳离子型聚丙烯酰胺. 添加 SFS鄄鄄2 黏结剂时,矿粉制粒效果最佳,其对应的矿团 湿强度为 94郾 62% ,抗压强度为 417郾 44 N,酸浸维持 完好时间超过 25 d. (2) 正交制粒试验结果显示:各个影响因素对 矿团的影响排序依次为:黏结剂质量分数 > 加酸量 > 制粒喷水量. 其中黏结剂质量分数的影响最为 显著. (3) 通过试验得到 SFS鄄鄄 2 黏结剂对细菌生长 影响有限,矿粉制粒后通过提高筑堆内孔隙率与渗 透系数,易于空气流通,增加氧气含量以及增大矿 石、矿团和溶液的接触面积,提高主要浸矿细菌生长 速率,进而促进硫化铜矿的浸出. 参 考 文 献 [1] Quaicoe I, Nosrati A, Skinner W, et al. Agglomeration and col鄄 umn leaching behaviour of goethitic and saprolitic nickel laterite ores. Miner Eng, 2014, 65: 1 [2] Hoummady E, Golfier F, Cathelineau M, et al. A multi鄄analytical approach to the study of uranium鄄ore agglomerate structure and po鄄 rosity during heap leaching. Hydrometallurgy, 2017, 171: 33 [3] Hoummady E, Golfier F, Cathelineau M, et al. A study of urani鄄 um鄄ore agglomeration parameters and their implications during heap leaching. Miner Eng, 2018, 127: 22 [4] Yang C R, Qin W Q, Lai S S, et al. Bioleaching of a low grade nickel鄄copper鄄cobalt sulfide ore. Hydrometallurgy, 2011, 106(1鄄 2): 32 [5] Ahmadi A, Khezri M, Abdollahzadeh A A, et al. Bioleaching of copper, nickel and cobalt from the low grade sulfidic tailing of Golgohar Iron Mine, Iran. Hydrometallurgy, 2015, 154: 1 [6] Hu B, Yi Y, Liang C, et al. Experimental study on particles ag鄄 glomeration by chemical and turbulent agglomeration before elec鄄 trostatic precipitators. Powder Technol, 2018, 335: 186 [7] Wollborn T, Schwed M F, Fritsching U. Direct tensile tests on particulate agglomerates for the determination of tensile strength and interparticle bond forces. Adv Powder Technol, 2017, 28(9): 2177 [8] Vo T T, Mutabaruka P, Nezamabadi S, et al. Mechanical strength of wet particle agglomerates. Mech Res Commun, 2018, 92: 1 [9] Luo Y, Wen J K, Wu B, et al. Acid agglomeration and mecha鄄 nism analysis of a low鄄grade oxide—sulfide mixed copper ore. Chin J Eng, 2017, 39(9): 1321 (罗毅, 温建康, 武彪, 等. 低品位氧硫混合铜矿的酸性制粒 及机理. 工程科学学报, 2017, 39(9): 1321) [10] Zhang Y B, Zhou Y L, Jiang T, et al. Applications of MHA binder in oxidized pellets preparation from vanadium, titanium鄄 bearing magnetite concentrates. J Cent South Univ Sci Technol, 2012, 43(7): 2459 (张元波, 周友连, 姜涛, 等. MHA 黏结剂在钒钛磁铁矿氧 化球团制备中的应用. 中南大学学报:自然科学版, 2012, 43(7): 2459) [11] Xie X L, Duan T, Zheng F Q, et al. Study of magnetite oxidized pellet prepared by modified composite binder. Met Mine, 2018 (1): 79 (谢小林, 段婷, 郑富强, 等. 改性复合黏结剂制备磁铁矿氧 化球团研究. 金属矿山, 2018(1): 79) [12] Li C X, Wang F F, Bai Y, et al. Experimental study on prepara鄄 tion of pellet binder by purified Ca鄄bentonite. Bull Chin Ceram Soc, 2018, 37(2): 672 (李彩霞, 王飞飞, 白阳, 等. 钙基膨润土提纯制备球团黏结 剂试验. 硅酸盐通报, 2018, 37(2): 672) [13] Jia J H, Han H L, Duan D P, et al. Effect of different binder addition on strength of carbon鄄containing pelletized blast furnace dusts. Iron steel Van Tit, 2013, 34(6): 29 (贾继华, 韩宏亮, 段东平, 等. 黏结剂对高炉灰含碳球团强 度的影响. 钢铁钒钛, 2013, 34(6): 29) [14] Yin Z X, Li X C, Bai Y, et al. Study on production of pellet by compound binder prepared with purified bentonite. Met Mine, 2018(4): 126 (殷志祥, 李秀晨, 白阳, 等. 提纯膨润土制备复合黏结剂用 于生产球团试验. 金属矿山, 2018(4): 126) [15] Wu X, Peng X M, Chen Y H. New high efficient adhesive iron concentrate oxidized pellets experiment. Mod Min, 2016(9): 78 ·1133·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有