正在加载图片...
刘福海等:拉瓦尔喷管结构模式对超音速射流流动特性的影响 59· 1.0 1.0 1.0 0.9 (a) 6 0.8 0.8 0.7 0.7 0.6 0.6 0.5 8 curvs-me lance 0.4 Cone-line lanc 0.4 0.3 Curve-line lance 0.3 Curve-ne lamce 0.2 …At exit 0.2 .…At exit 0 0.51.01.52.02.5 0 0.51.01.52.0 2.5 0 0.51.01.52.02.5 Radial distance/m Radial distance/m Radial distance/m 图6不同氧气流量条件下,锥形喷管与曲线喷管射流在轴向方向上的氧气摩尔分数分布.(a)氧气流量=2950m3h':(b)氧气流量=3450m3h: (c)氧气流量=3950m3h-1 Fig.6 Molar concentration of oxygen flow distribution using various Laval nozzles at centerline with different oxygen flow rates:(a)oxygen flow rate= 2950 mh (b)oxygen flow rate=3450 mh (c)oxygen flow rate=3950 m.h- 4结论 the gas region.Metall Mater Trans B,2013,44(3):653 [6]Fen C.Zhu R,Han B C.et al.Effect of nozzle exit wear on the (1)由于锥形喷管喉口处存在凸角连接,超音 fluid flow characteristics of supersonic oxygen lance.Metall Mater 速射流发生了非稳定的加速式膨胀,并形成了普 Trans B,2020,51(1):187 朗特-迈耶膨胀波.该现象严重干扰了超音速射流 [7]Liu F H,Zhu R,Dong K,et al.Effect of ambient and oxygen 的稳定发展,削弱了拉瓦尔管出口处超音速射流 temperature on flow field characteristics of coherent jet.Metall 的初始轴向动能. Mater Trans B,2016,47(1):228 [8] (2)模拟结果表明曲线喷管喉口处的圆弧过 Wang H,Zhu R,Lu M,et al.Numerical simulation of swirl-type lances in vanadium extraction process.JUniv Sci Technol Beijing, 渡设计可有效提高超音速射流稳定性,延长了氧 2014,36(1):89 气射流的超音速段长度,提高了氧气射流对熔池 (王慧,朱荣,吕明,等.提钒用旋流氧枪喷头的数值模拟.北京 冲击搅拌效果 科技大学学报,2014,36(1):89) (3)曲线喷管在不同供氧条件下对熔池的冲 [9] Sambasivam R,Lenka S N,Durst F,et al.A new lance design 击搅拌效果均优于锥形喷管,但二者的差值随着 BOF steelmaking.Metall Mater Trans B,2007,38(1):45 轴向距离及供氧流量的增加而缩小,表明曲线喷 [10]Liu F H,Sun D B,Zhu R,et al.Effect of shrouding gas 管在低枪位供氧模式下更具优势,且超设计流量 temperature on characteristics of a supersonic jet flow field with a shrouding laval nozzle structure.Metall Mater Trans B.2018, 喷吹状态下曲线喷管难以有效维持射流的稳定 49(4):2050 发展. [11]Odenthal H J,Bui P,Reifferscheid M,et al.Advanced design of bumer/injector systems in electric arc furnaces (EAF)//The 4th 参考文献 International Conference on Modelling and Simulation of [1]Naito K I,Ogawa Y,Inomoto T,et al.Characteristics of jets from Metallurgical Processes in Steelmaking.Dusseldorf,2011:1 top-blown lance in converter.ISL/Int,2000.40(1):23 [12]Wu X T,Zhu R,Wei G S,et al.Influence of the carrier gas species [2]Deo B,Boom R.Fundamentals of Steelmaking Metallurgy on CaO-gas mixed injection in the EAF steelmaking process. London:Prentice-Hall.1993 Metall Mater Trans B,2019,50(5):2389 [3]Zhou X B,Ersson M,Zhong L C,et al.Mathematical and physical [13]Huang G P,Liang D W.The numerical simulation of 3-D flows of simulation of a top blown converter.Steel Res Int,2014,85(2): a inlet using multi-block MUSCI algorithm.Acta Aerodynamica 273 Sinica,2000,18(2):194 [4]Liu F H,Sun D B,Zhu R,et al.Characteristics of flow field for (黄国平,梁德旺.块结构的MUSCL算法求解三维进气道流场. supersonic oxygen multijets with various Laval nozzle structures. 空气动力学报,2000,18(2):194) Metall Mater Trans B,2019,50(5):2362 [14]Papamoschou D.Roshko A.The compressible turbulent shear [5]Doh Y.Chapelle P,Jardy A,et al.Toward a full simulation of the layer:an experimental study.J Fluid Mech,1988,197(6):453 basic oxygen fumace:deformation of the bath free surface and [15]Launder B E,Spalding D B.Lectures in Mathematical Model of coupled transfer processes associated with the post-combustion in Turbulence.London:Academic Press,19724    结论 (1)由于锥形喷管喉口处存在凸角连接,超音 速射流发生了非稳定的加速式膨胀,并形成了普 朗特−迈耶膨胀波. 该现象严重干扰了超音速射流 的稳定发展,削弱了拉瓦尔管出口处超音速射流 的初始轴向动能. (2)模拟结果表明曲线喷管喉口处的圆弧过 渡设计可有效提高超音速射流稳定性,延长了氧 气射流的超音速段长度,提高了氧气射流对熔池 冲击搅拌效果. (3)曲线喷管在不同供氧条件下对熔池的冲 击搅拌效果均优于锥形喷管,但二者的差值随着 轴向距离及供氧流量的增加而缩小,表明曲线喷 管在低枪位供氧模式下更具优势,且超设计流量 喷吹状态下曲线喷管难以有效维持射流的稳定 发展. 参    考    文    献 Naito K I, Ogawa Y, Inomoto T, et al. Characteristics of jets from top-blown lance in converter. ISIJ Int, 2000, 40(1): 23 [1] Deo  B,  Boom  R. Fundamentals of Steelmaking Metallurgy. London: Prentice-Hall, 1993 [2] Zhou X B, Ersson M, Zhong L C, et al. Mathematical and physical simulation  of  a  top  blown  converter. Steel Res Int,  2014,  85(2): 273 [3] Liu F H, Sun D B, Zhu R, et al. Characteristics of flow field for supersonic oxygen multijets with various Laval nozzle structures. Metall Mater Trans B, 2019, 50(5): 2362 [4] Doh Y, Chapelle P, Jardy A, et al. Toward a full simulation of the basic  oxygen  furnace:  deformation  of  the  bath  free  surface  and coupled transfer processes associated with the post-combustion in [5] the gas region. Metall Mater Trans B, 2013, 44(3): 653 Fen C, Zhu R, Han B C, et al. Effect of nozzle exit wear on the fluid flow characteristics of supersonic oxygen lance. Metall Mater Trans B, 2020, 51(1): 187 [6] Liu  F  H,  Zhu  R,  Dong  K,  et  al.  Effect  of  ambient  and  oxygen temperature  on  flow  field  characteristics  of  coherent  jet. Metall Mater Trans B, 2016, 47(1): 228 [7] Wang H, Zhu R, Lü M, et al. Numerical simulation of swirl-type lances in vanadium extraction process. J Univ Sci Technol Beijing, 2014, 36(1): 89 (王慧, 朱荣, 吕明, 等. 提钒用旋流氧枪喷头的数值模拟. 北京 科技大学学报, 2014, 36(1):89) [8] Sambasivam  R,  Lenka  S  N,  Durst  F,  et  al.  A  new  lance  design BOF steelmaking. Metall Mater Trans B, 2007, 38(1): 45 [9] Liu  F  H,  Sun  D  B,  Zhu  R,  et  al.  Effect  of  shrouding  gas temperature on characteristics of a supersonic jet flow field with a shrouding  laval  nozzle  structure. Metall Mater Trans B,  2018, 49(4): 2050 [10] Odenthal H J, Bui P, Reifferscheid M, et al. Advanced design of burner/injector  systems  in  electric  arc  furnaces  (EAF)  // The 4th International Conference on Modelling and Simulation of Metallurgical Processes in Steelmaking. Dusseldorf, 2011: 1 [11] Wu X T, Zhu R, Wei G S, et al. Influence of the carrier gas species on  CaO-gas  mixed  injection  in  the  EAF  steelmaking  process. Metall Mater Trans B, 2019, 50(5): 2389 [12] Huang G P, Liang D W. The numerical simulation of 3-D flows of a  inlet  using  multi-block  MUSCI  algorithm. Acta Aerodynamica Sinica, 2000, 18(2): 194 (黄国平, 梁德旺. 块结构的MUSCL算法求解三维进气道流场. 空气动力学报, 2000, 18(2):194) [13] Papamoschou  D,  Roshko  A.  The  compressible  turbulent  shear layer: an experimental study. J Fluid Mech, 1988, 197(6): 453 [14] Launder  B  E,  Spalding  D  B. Lectures in Mathematical Model of Turbulence. London: Academic Press, 1972 [15] 0 0.5 1.0 1.5 2.0 2.5 Radial distance/m 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cone-line lance Curve-line lance At exit Mole fraction of oxygen/ % (a) 0 0.5 1.0 1.5 2.0 2.5 Radial distance/m 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cone-line lance Curve-line lance At exit Mole fraction of oxygen/ % (b) 0 0.5 1.0 1.5 2.0 2.5 Radial distance/m 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cone-line lance Curve-line lance At exit Mole fraction of oxygen/ % (c) 图 6    不同氧气流量条件下,锥形喷管与曲线喷管射流在轴向方向上的氧气摩尔分数分布. (a)氧气流量=2950 m 3 ·h−1;(b)氧气流量=3450 m 3 ·h−1 ; (c)氧气流量=3950 m 3 ·h−1 Fig.6    Molar concentration of oxygen flow distribution using various Laval nozzles at centerline with different oxygen flow rates: (a) oxygen flow rate = 2950 m 3 ·h−1; (b) oxygen flow rate = 3450 m 3 ·h−1; (c) oxygen flow rate = 3950 m 3 ·h−1 刘福海等: 拉瓦尔喷管结构模式对超音速射流流动特性的影响 · 59 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有