ARTICLES COMPETING FINANCIAL INTERESTS 24. Watanabe. M. et al. Bile acids induce e by promoting intracellular The authors declare competing financial interests: details are available in the online thyroid hormone activation. Nature 4 version of the paper. Is. EP et al The bile acid ch acid increases human brown 2015 and lipid metabolism by bacterial Reprintsandpermissionsinformationisavailableonlineathttp:/www.nature.com prints/index. html. Publishers note: Springer Nature remains neutral with regard to bile acid modification in the gut. Proc. Natl. Acad. Sci. USA 111, 7421-7426 jurisdictional claims in published maps and institutional affiliations Turnbaugh, P.. et microbiota in rats. Gastroenterology 141, 1773-1781 (2011) obesity-associated gut microbiome with increased capacity 28 Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont lusso. G.Gambino, R. Cassader, M. Interactions between gut microbiota o expansion and colitis in nioi mice. Nature 487 104-108(2012) sm predisposing to obesity and diabetes. Annu. Rev. Med. 62 Henao-Mejia, J. et al. some-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179-185 (201 discordant for obesity modulate prevent atherosclerosis in cholesteryl ester transfer protein transgen metabolism in mice. Science 341, 1241214(2013 density lipoprotein receptor/- mice. J. Pharmacol. Exp. Ther. 343, 556-567 lang, Z. ef al. Nonlethal inhibition of gut microbial trimethylamine production for 31 Nedergaard, J, Bengtsson, T. Cannon, B. Unexpected evide the treatment of atherosclerosis. Ce// 163, 1585-1595(2015). wn adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293 and thrombosis risk. Cell 165, 111-124(2016) 444-E452(2007) 2. Cypess, A.M. et al. Identification mportance of brown adipose tissue in adult Jobin. C. The microbiome and cancer. Nat. Rev. Cancer 13 33. Saito, M. et al. High incidence of metabolically active brown adipose tissue avid, L.A. et al. Diet rapidly and reproducibly alters the human gut microbiome healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, Nature505,559-563(2014) e 9. Carmody, R N. et al. Diet dominates host genotype in shaping the murine gut 34. van Marken Lichtenbelt, W.D. et al. Cold-activated brown adipose tissue in healthy icrobiota. Cell Host Microbe 17, 72-84(2 11. Zietak, M. et al. Altered microbiota contributes to reduced diet-induced obese (2012) pon cold exposure. Cell Metab. 23, 1216-1223(2016) 12. Cannon, B.&Nedergaard, J. Brown adipose tissue: function and physiological gnificance. Physiol. Rev. 84, 277-359(2004) Schlein, C. et al. FGF21 lowers plasma triglycerides by accelerating lipoprotein 13. Harms. M and beige fat: development, function and therapeutic anabolism in white and brown adipose tissues. Cell Metab. 441-453 potential. Nat. Med. 19, 1252-1263 (2013). se tissue browning and metabolic health. Nat. Rev. 38. Cannon, C P et al. Ezetimibe added to statin therapy after acute coronary syndromes. Endocrinol.10.24-36(2014) ford, K I. et al. Brown adipose tissue regulates glucose homeostasis and insulin Is homeostasis through attenuation of hepatic lipogenesis. Nat. Med. 20, 1436-1443 development. Nat. Commun lation and genetics of bile acid synthesis. 41. Scheja, L& Heeren, J Metabolic interplay between white, beige, brown adipocytes Li-Hawkins, J, Lund, E.G., Turley, S.D.&Russell, D W. Disruption of the 42. Sayin, S 1. et al. Gut microbiota regulates bile acid metabolism by reducing the oxysterol 7a-hydroxylase gene in mice. J. Biol. Chem. 275, 16536-16542 levels of tauro-B-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. g 20. Kuipers, F, Bloks, V.W.& Groen, A.K. Beyond intestinal soap-bile acids in 43. Zhong, C.Y. et al. Microbiota prevents cholesterol loss from the body by regulating metabolic control. Nat. Rev. Endocrinol. 10. 488-498(2014). 21. Kalaany, N.Y. Mangelsdorf, D.J. LXRS and FXR: the yin and yang of cholesterol 44. Brufau np、se.R95.10512(2015 mic control with colesevelam treatment in patients and fat metabolism. Annu. Rev. Physiol. 68, 159-1 22 Pols, T W, Noriega, L.G., Nomura verx, J& Schoon jans, K. The bile acid mbrane receptor TGR5 as an emerging target in metabolism and inflammation. 45. Haeusler, R.A., Astiarraga, B, Camastra, S, Accili, D.& Ferrannini, E.Human J. Hepato.54,1263-1272(2011). ciated with increased plasma levels of 12a-hydroxylated 23. Katsuma, s. awa, A.& Tsujimoto, G. Bile acids promote glucagon- bile acids. Diabetes 62, 4184-4191(2013) peptide 1 secretion through TGR murine enteroendocrine cell line STC-1. 46. Hanssen, M.J. et al. Short-term cold acclimation improves insulin sensitivity in Biochem. Biophys. Res. Commun. 329, 386-390(2005). patients with type 2 diabetes mellitus. Nat. Med. 21, 863-865(2015).© 2017 Nature America, Inc., part of Springer Nature. All rights reserved. a r t i c l e s nature medicine advance online publication 11 COMPETING FINANCIAL INTERESTS The authors declare competing financial interests: details are available in the online version of the paper. Reprints and permissions information is available online at http://www.nature.com/ reprints/index.html. Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. 1. Turnbaugh, P.J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006). 2. Musso, G., Gambino, R. & Cassader, M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu. Rev. Med. 62, 361–380 (2011). 3. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012). 4. Ridaura, V.K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013). 5. Wang, Z. et al. Nonlethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585–1595 (2015). 6. Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyper-reactivity and thrombosis risk. Cell 165, 111–124 (2016). 7. Schwabe, R.F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800–812 (2013). 8. David, L.A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014). 9. Carmody, R.N. et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17, 72–84 (2015). 10. Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015). 11. Ziętak, M. et al. Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab. 23, 1216–1223 (2016). 12. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004). 13. Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013). 14. Bartelt, A. & Heeren, J. Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 10, 24–36 (2014). 15. Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011). 16. Stanford, K.I. et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123, 215–223 (2013). 17. Berbée, J.F. et al. Brown fat activation reduces hypercholesterolemia and protects from atherosclerosis development. Nat. Commun. 6, 6356 (2015). 18. Russell, D.W. The enzymes, regulation and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137–174 (2003). 19. Li-Hawkins, J., Lund, E.G., Turley, S.D. & Russell, D.W. Disruption of the oxysterol 7α-hydroxylase gene in mice. J. Biol. Chem. 275, 16536–16542 (2000). 20. Kuipers, F., Bloks, V.W. & Groen, A.K. Beyond intestinal soap—bile acids in metabolic control. Nat. Rev. Endocrinol. 10, 488–498 (2014). 21. Kalaany, N.Y. & Mangelsdorf, D.J. LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annu. Rev. Physiol. 68, 159–191 (2006). 22. Pols, T.W., Noriega, L.G., Nomura, M., Auwerx, J. & Schoonjans, K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J. Hepatol. 54, 1263–1272 (2011). 23. Katsuma, S., Hirasawa, A. & Tsujimoto, G. Bile acids promote glucagon-like peptide 1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem. Biophys. Res. Commun. 329, 386–390 (2005). 24. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006). 25. Broeders, E.P. et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab. 22, 418–426 (2015). 26. Joyce, S.A. et al. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc. Natl. Acad. Sci. USA 111, 7421–7426 (2014). 27. Islam, K.B. et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141, 1773–1781 (2011). 28. Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012). 29. Sonnenburg, E.D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016). 30. Hambruch, E. et al. Synthetic farnesoid X receptor agonists induce high-densitylipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic lowdensity lipoprotein receptor−/− mice. J. Pharmacol. Exp. Ther. 343, 556–567 (2012). 31. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007). 32. Cypess, A.M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009). 33. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009). 34. van Marken Lichtenbelt, W.D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009). 35. Ouellet, V. et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 122, 545–552 (2012). 36. Nedergaard, J. & Cannon, B. The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab. 11, 268–272 (2010). 37. Schlein, C. et al. FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown adipose tissues. Cell Metab. 23, 441–453 (2016). 38. Cannon, C.P. et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. 372, 2387–2397 (2015). 39. Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015). 40. Wang, G.X. et al. The brown-fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat. Med. 20, 1436–1443 (2014). 41. Scheja, L. & Heeren, J. Metabolic interplay between white, beige, brown adipocytes and the liver. J. Hepatol. 64, 1176–1186 (2016). 42. Sayin, S.I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-β-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013). 43. Zhong, C.Y. et al. Microbiota prevents cholesterol loss from the body by regulating host gene expression in mice. Sci. Rep. 5, 10512 (2015). 44. Brufau, G. et al. Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatology 52, 1455–1464 (2010). 45. Haeusler, R.A., Astiarraga, B., Camastra, S., Accili, D. & Ferrannini, E. Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes 62, 4184–4191 (2013). 46. Hanssen, M.J. et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat. Med. 21, 863–865 (2015)