正在加载图片...
尹升华等:硫化铜矿粒孔隙模型重构与溶液渗流模拟 501· (a) 850 P10-3Pa) (b) 6006s0 850 P/(10-3 Pa) Xμm 800 799.61 800 750 55 750 目691.44 700 500 700 567.33 600 露 525.96 443)1 600 401.84 550 360.47 550 目319.10 277.72 500 236. 500 自94.8 450 841 450 650 29.49 -11.88 600 -53.25 550 9462 500 图10压力分布图.(a)压力分布图:(b)压力等值线图 Fig.10 Pressure profile:(a)pressure distribution;(b)pressure contour map (3)在试验假设与参数设定条件下,溶液渗流 (曾毅君,李建华,李铁球,等.中国含泥轴矿酸法堆浸制粒技术 模拟仿真试验中溶液的流速与压力在孔隙通道底 的应用.轴矿冶,2002,21(4):182) 部区域和较狭窄的区域急剧增加,对矿粒结构的 [8] Liu XX,Wang L,Xie J P,et al.Experimental study on column 稳定性造成了影响 leach of low grade copper oxide.Min Metall Eng,2016,36(1):83 (刘新星,王龙,谢建平,等.低品位氧化铜矿柱浸试验研究.矿 (4)将矿粉预先制粒再浸矿,矿粒内部孔隙结 冶工程,2016,36(1):83) 构的变化与溶液的渗流作用相互影响、相互作用, [9] Chen W,Yin S H,Wu A X,et al.Bioleaching of copper sulfides 会影响到浸矿效率与浸出率 using mixed microorganisms and its community structure succession in the presence of seawater.Bioresour Technol,2020. 参考文献 297:122453 [1]Akinci G,Guven D E.Bioleaching of heavy metals contaminated [10]Zhou A,Zhang Q,Bai R N,et al.Characterization of coal micro- sediment by pure and mixed cultures of Acidithiobacillus spp pore structure and simulation on the seepage rules of low-pressure Desalination,2011,268(1-3:221 water based on CT scanning data.Minerals,2016,6(3):78 [2]Zeng J,LiJ,Gou M.et al.Effective strategy for improving sludge [11]Tang B W,Gao S,Wang Y G,et al.Pore structure analysis of treatment rate and microbial mechanisms during chromium electrolytic manganese residue based permeable brick by using bioleaching of tannery sludge.Process Biochem,2019,83:159 industrial CT.Construct Build Mater,2019,208:697 [3]Yin S H,Chen W,Chen X,et al.Bacterial-mediated recovery of [12]Bell S L,Welch G D,Bennett P G.Development of ammoniacal copper from low-grade copper sulfide using acid-processed rice lixiviants for the in-situ leaching of chalcopyrite.Hydromegy straw.Bioresource Technol,2019,288:121605 1995,39(1-3):11 [4]Yin S H,Wang L M,Wu A X,et al.Progress of research in copper [13]Yin S H,Chen W,Liu J M,et al.Agglomeration experiment of bioleaching technology in China.ChinJEng.019,41(2):143 secondary copper sulfide ore.Chin JEng,019,41(9):1127 (尹升华,王雷鸣,吴爱祥,等.我国铜矿微生物浸出技术的研究 (尹升华,陈威,刘家明,等.次生硫化铜矿制粒试验.工程科学 进展.工程科学学报,2019,41(2):143) 学报,2019,41(9):1127) [5]Petersen J.Heap leaching as a key technology for recovery of [14]Nosrati A,Quast K,Xu D F,et al.Agglomeration and column values from low-grade ores-a brief overview.Hydrome. leaching behaviour of nickel laterite ores:effect of ore mineralogy 1 allurgy,2016.165:206 and particle size distribution.Hydromerallurgy,2014,146:29 [6]Chen W.Yin S H.Qi Y,et al.Effect of additives on bioleaching of [15]Yin J S,He R G,Shen K N.Commercial tests of tailing copper sulfide ores.J Central South Univ Sci Technol,2019, briquetting-heap leaching in a certain gold mine.Gold,2007, 50(7):1507 28(2):42 (陈威,尹升华,齐炎,等.添加剂对硫化铜矿生物浸出规律的影 (尹江生,贺锐岗,沈凯宁.某金矿选矿厂尾矿制粒堆浸工业试 响.中南大学学报:自然科学版,2019,50(7):1507) 验.黄金,2007,28(2):42) [7]Zeng Y J,Li J H,Li T Q,et al.Technical application of [16]Quaicoe I,Nosrati A,Skinner W,et al.Agglomeration and column agglomerated acidic heap leaching of clay bearing uranium ore in leaching behaviour of goethitic and saprolitic nickel laterite ores. China.Uran Min Metall.2002.21(4):182 Miner Eng,2014,65:1(3)在试验假设与参数设定条件下,溶液渗流 模拟仿真试验中溶液的流速与压力在孔隙通道底 部区域和较狭窄的区域急剧增加,对矿粒结构的 稳定性造成了影响. (4)将矿粉预先制粒再浸矿,矿粒内部孔隙结 构的变化与溶液的渗流作用相互影响、相互作用, 会影响到浸矿效率与浸出率. 参    考    文    献 Akinci G, Guven D E. Bioleaching of heavy metals contaminated sediment  by  pure  and  mixed  cultures  of  Acidithiobacillus  spp. Desalination, 2011, 268(1-3): 221 [1] Zeng J, Li J, Gou M, et al. Effective strategy for improving sludge treatment  rate  and  microbial  mechanisms  during  chromium bioleaching of tannery sludge. Process Biochem, 2019, 83: 159 [2] Yin S H, Chen W, Chen X, et al. Bacterial-mediated recovery of copper  from  low-grade  copper  sulfide  using  acid-processed  rice straw. Bioresource Technol, 2019, 288: 121605 [3] Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. Chin J Eng, 2019, 41(2): 143 (尹升华, 王雷鸣, 吴爱祥, 等. 我国铜矿微生物浸出技术的研究 进展. 工程科学学报, 2019, 41(2):143) [4] Petersen  J.  Heap  leaching  as  a  key  technology  for  recovery  of values  from  low-grade  ores ——a  brief  overview. Hydrome￾tallurgy, 2016, 165: 206 [5] Chen W, Yin S H, Qi Y, et al. Effect of additives on bioleaching of copper  sulfide  ores. J Central South Univ Sci Technol,  2019, 50(7): 1507 (陈威, 尹升华, 齐炎, 等. 添加剂对硫化铜矿生物浸出规律的影 响. 中南大学学报:自然科学版, 2019, 50(7):1507) [6] Zeng  Y  J,  Li  J  H,  Li  T  Q,  et  al.  Technical  application  of agglomerated acidic heap leaching of clay bearing uranium ore in China. Uran Min Metall, 2002, 21(4): 182 [7] (曾毅君, 李建华, 李铁球, 等. 中国含泥铀矿酸法堆浸制粒技术 的应用. 铀矿冶, 2002, 21(4):182) Liu X X, Wang L, Xie J P, et al. Experimental study on column leach of low grade copper oxide. Min Metall Eng, 2016, 36(1): 83 (刘新星, 王龙, 谢建平, 等. 低品位氧化铜矿柱浸试验研究. 矿 冶工程, 2016, 36(1):83) [8] Chen W, Yin S H, Wu A X, et al. Bioleaching of copper sulfides using  mixed  microorganisms  and  its  community  structure succession in the presence of seawater. Bioresour Technol, 2020, 297: 122453 [9] Zhou A, Zhang Q, Bai R N, et al. Characterization of coal micro￾pore structure and simulation on the seepage rules of low-pressure water based on CT scanning data. Minerals, 2016, 6(3): 78 [10] Tang  B  W,  Gao  S,  Wang  Y  G,  et  al.  Pore  structure  analysis  of electrolytic  manganese  residue  based  permeable  brick  by  using industrial CT. Construct Build Mater, 2019, 208: 697 [11] Bell S L, Welch G D, Bennett P G. Development of ammoniacal lixiviants for the in-situ leaching of chalcopyrite. Hydrometallurgy, 1995, 39(1-3): 11 [12] Yin  S  H,  Chen  W,  Liu  J  M,  et  al.  Agglomeration  experiment  of secondary copper sulfide ore. Chin J Eng, 2019, 41(9): 1127 (尹升华, 陈威, 刘家明, 等. 次生硫化铜矿制粒试验. 工程科学 学报, 2019, 41(9):1127) [13] Nosrati  A,  Quast  K,  Xu  D  F,  et  al.  Agglomeration  and  column leaching behaviour of nickel laterite ores: effect of ore mineralogy and particle size distribution. Hydrometallurgy, 2014, 146: 29 [14] Yin  J  S,  He  R  G,  Shen  K  N.  Commercial  tests  of  tailing briquetting-heap  leaching  in  a  certain  gold  mine. Gold,  2007, 28(2): 42 (尹江生, 贺锐岗, 沈凯宁. 某金矿选矿厂尾矿制粒堆浸工业试 验. 黄金, 2007, 28(2):42) [15] Quaicoe I, Nosrati A, Skinner W, et al. Agglomeration and column leaching behaviour of goethitic and saprolitic nickel laterite ores. Miner Eng, 2014, 65: 1 [16] 650 600 600 550 550 450 850 800 750 799.67 P/(10−3 Pa) 734.85 637.62 507.98 410.75 345.93 281.11 216.29 572.80 443.16 767.26 702.44 605.21 475.57 670.03 540.39 378.34 313.52 248.70 54.25 −6.52 86.66 21.84 183.88 151.47 119.07 700 500 500 (a) X/μm Z/μm Y/μm 650 600 550 850 800 750 700 500 X/μm Y/μm 600 550 450 691.44 P/(10−3 Pa) 567.33 443.21 360.47 277.72 194.98 650.07 484.58 525.96 608.70 401.84 319.10 236.35 −11.88 −94.62 29.49 −53.25 153.61 112.24 70.86 500 (b) Z/μm 图 10    压力分布图. (a)压力分布图;(b)压力等值线图 Fig.10    Pressure profile: (a) pressure distribution; (b) pressure contour map 尹升华等: 硫化铜矿粒孔隙模型重构与溶液渗流模拟 · 501 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有