正在加载图片...
水丽等:石墨烯含量对石墨烯/A1-15Si-4Cu~Mg复合材料微观组织和力学性能的影响 ·1167. properties of TiAl matrix composites reinforced by multilayer gra- 3结论 phene.Carbon,2014,67:168 [8]Kumar KK A,Pillai UTS,Pai B C,et al.Dry sliding wear be- (1)所制备的石墨烯增强GNFs/A-15Si-4Cu- havior of Mg-Si alloys.Wear,2013,303(1-2):56 Mg复合材料,当石墨烯添加量在0.4%~0.8%,石 [9]Yolshina L.A,Muradymow R V,Korsun I V,et al.Novel alumi- 墨烯沿基体晶界均匀分布,石墨烯与A!基体界面结 num-graphene and aluminum-graphite metallic composite materi- 合强度较高.B-Si、Mg2Si和Al2Cu等增强相在基体 als:synthesis and properties.J Alloys Compd,2016,663:449 中弥散分布,不仅起到固溶强化做用,而且有效抑制 [10]Bastwros M,Kim G Y,Zhu C.et al.Effect of ball milling on 晶粒长大.当石墨烯添加量为1.0%时,石墨烯薄 graphene reinforced Al6061 composite fabricated by semi-solid sintering.Composites Part B,2014,60:111 片在基体中的分散性变差,团聚形成夹杂,晶界处过 [11]Boostani A F,Tahamtan S,Jiang Z Y,et al.Enhanced tensile 量石墨烯诱发脆性鱼骨状Al,Cu2 MgsSi,-相析出. properties of aluminium matrix composites reinforced with gra- (2)石墨烯增强GNFs/A-15Si-4Cu-Mg复合 phene encapsulated SiC nanoparticles.Composites Part A,2015, 材料的强度随着石墨烯添加量的增大(0,0.4%, 68:155 0.8%,1.0%)先升高后降低.当石墨烯添加量为 [12]Shin S E,Bae D H.Deformation behavior of aluminum alloy ma- trix composites reinforced with few-layer graphene.Composites 0.8%时,抗拉强度和硬度达到321MPa和HV98, PatA,2015,78:42 相比A-15Si-4Cu-Mg复合材料分别提高了19.3% [13]Qi T J.Yu Z M,Xu Z P.et al.Preparation and mechanical 和46.2%.当石墨烯添加量为0.4%,复合材料的屈 properties of graphene reinforced aluminum composites.Harbin 服强度高达221MPa,复合材料强度获得明显改善. Unis Sci Technol,2015,20(3):61 (齐天娇,俞泽民,许志鹏,等.石墨烯增强铝基复合材料制 (3)石墨烯增强GNFs/A-15Si-4Cu-Mg复合 备及力学性能研究.哈尔滨理工大学学报,2015,20(3):61) 材料的塑性随着石墨烯含量的升高变化不一,当石 [14]Xu Y C.Research on Friction and Wear and Cutting Performance 墨烯添加量为0.8%时,材料塑性比未添加石墨烯 of Graphene/Al-Si Composites Dissertation].Shenyang:Shen- 的Al-15Si-4Cu-Mg复合材料的塑性明显增大.当 yang Ligong University,2018 石墨烯的添加量为1.0%,脆性Al,Cu2 MgsSi,.相的析 (徐运超.石墨稀/A-Si复合材料摩擦磨损及切削特性的研 出,相比0.8%的试样,材料的塑性和强度均降低. 究[学位论文].沈阳:沈阳理工大学,2018) [15]Tjong S C.Recent progress in the development and properties of 参考文献 novel metal matrix nanocomposites reinforced with carbon nano- tubes and graphene nanosheets.Mater Sci Eng R,2013.74 [1]Li J L,Wang X D,Wu Y,et al.Microstructure and mechanical (10):281 properties of aluminum-matrix composite with different graphene [16]Rong X D.Huang LJ,Wang B,et al.Effects of heat treatment contents.Chin J Rare Met,2018,42(3):252 on microstructure and properties of TiB.T60 composites with (李炯利,王旭东,武岳,等.石墨烯含量对铝基复合材料微 network microstructure.Acta Mater Compos Sin,2015,32(6): 观组织和力学性能的影响.稀有金属,2018,42(3):252) 1729 [2]Matsuda K,Ikeno S,Uetani Y,et al.Metastable phases in an Al- (戎旭东,黄陆军,王博,等.热处理对网状结构TB./T60 Mg-Si alloy containing copper.Metall Mater Trans A,2001,32 复合材料组织与性能的影响.复合材料学报,2015,32(6): (6):1293 1729) [3]Selvakumar S,Dinaharan I,Palanivel R,et al.Development of [17]Yang Q,Xei W H,Meng S H,et al.Multi-scale analysis meth- stainless steel particulate reinforced AA6082 aluminum matrix od of composites and damage simulation of typical component un- composites with enhanced ductility using friction stir processing. der tensile load.Acta Mater Compos Sin,2015,32(3):617 Mater Sci Eng A,2017,685:317 (杨强,解维华,孟松鹤,等.复合材料多尺度分析方法与典 [4]Yan S J,Dai S L,Zhang X Y,et al.Investigating aluminum alloy 型元件拉伸损伤模拟.复合材料学报,2015,32(3):617) reinforeed by graphene nanoflakes.Mater Sci Eng A.2014,612:440 [18]Jiang LL,Xu M L,Li Z G,et al.Experimental investigation on [5]Guan R G,Lian C,Zhao Z Y,et al.Study on preparation of gra- thermo-physical properties of 3D braided composites.Acta Mater phene and Al-graphene composite.Rare Met Mater Eng,2012,42 Compos Sin,2017,34(12):2734 (Suppl 2)607 (姜黎黎,徐美玲,李振国,等.三维编织复合材料热物理性 (管仁国,连超,赵占勇,等.石墨烯铝基复合材料的制备及 能实验.复合材料学报,2017,34(12):2734) 其性能.稀有金属材料与工程,2012,42(增刊2):607) [19]Li JL,LiS S.Fan ZZ,et al.Preparation of super high strength [6]Wang J Y,Li Z Q,Fan G L,et al.Reinforcement with graphene bulk nanoerystalline Al by cryomilling.Chin I Nonferrous Met, nanosheets in aluminum matrix composites.Scripta Mater,2012, 2013,23(5):1182 66(8):594 (李炯利,厉沙沙,樊振中,等.低温球磨制备超高强度块体 [7]Xu ZS,Shi X L,Zhai W Z,et al.Preparation and tribological 纳米晶纯铝.中国有色金属学报,2013,23(5):1182)水 丽等: 石墨烯含量对石墨烯/ Al鄄鄄15Si鄄鄄4Cu鄄鄄Mg 复合材料微观组织和力学性能的影响 3 结论 (1)所制备的石墨烯增强 GNFs/ Al鄄鄄15Si鄄鄄4Cu鄄鄄 Mg 复合材料,当石墨烯添加量在 0郾 4% ~ 0郾 8% ,石 墨烯沿基体晶界均匀分布,石墨烯与 Al 基体界面结 合强度较高. 茁鄄鄄Si、Mg2 Si 和 Al 2Cu 等增强相在基体 中弥散分布,不仅起到固溶强化做用,而且有效抑制 晶粒长大. 当石墨烯添加量为 1郾 0% 时,石墨烯薄 片在基体中的分散性变差,团聚形成夹杂,晶界处过 量石墨烯诱发脆性鱼骨状 Al 4Cu2Mg8 Si 7相析出. (2)石墨烯增强 GNFs/ Al鄄鄄 15Si鄄鄄 4Cu鄄鄄 Mg 复合 材料的强度随着石墨烯添加量的增大(0,0郾 4% , 0郾 8% ,1郾 0% )先升高后降低. 当石墨烯添加量为 0郾 8% 时,抗拉强度和硬度达到 321 MPa 和 HV 98, 相比 Al鄄鄄15Si鄄鄄4Cu鄄鄄Mg 复合材料分别提高了 19郾 3% 和 46郾 2% . 当石墨烯添加量为 0郾 4% ,复合材料的屈 服强度高达221 MPa, 复合材料强度获得明显改善. (3)石墨烯增强 GNFs/ Al鄄鄄 15Si鄄鄄 4Cu鄄鄄 Mg 复合 材料的塑性随着石墨烯含量的升高变化不一,当石 墨烯添加量为 0郾 8% 时,材料塑性比未添加石墨烯 的 Al鄄鄄15Si鄄鄄4Cu鄄鄄Mg 复合材料的塑性明显增大. 当 石墨烯的添加量为 1郾 0% ,脆性 Al 4Cu2Mg8 Si 7相的析 出,相比 0郾 8% 的试样,材料的塑性和强度均降低. 参 考 文 献 [1] Li J L, Wang X D, Wu Y, et al. Microstructure and mechanical properties of aluminum鄄matrix composite with different graphene contents. Chin J Rare Met, 2018, 42(3): 252 (李炯利, 王旭东, 武岳, 等. 石墨烯含量对铝基复合材料微 观组织和力学性能的影响. 稀有金属, 2018, 42(3): 252) [2] Matsuda K, Ikeno S, Uetani Y, et al. Metastable phases in an Al鄄鄄 Mg鄄鄄 Si alloy containing copper. Metall Mater Trans A, 2001, 32 (6): 1293 [3] Selvakumar S, Dinaharan I, Palanivel R, et al. Development of stainless steel particulate reinforced AA6082 aluminum matrix composites with enhanced ductility using friction stir processing. Mater Sci Eng A, 2017, 685: 317 [4] Yan S J, Dai S L, Zhang X Y, et al. Investigating aluminum alloy reinforced by graphene nanoflakes. Mater Sci Eng A, 2014, 612: 440 [5] Guan R G, Lian C, Zhao Z Y, et al. Study on preparation of gra鄄 phene and Al鄄graphene composite. Rare Met Mater Eng, 2012, 42 (Suppl 2): 607 (管仁国, 连超, 赵占勇, 等. 石墨烯铝基复合材料的制备及 其性能. 稀有金属材料与工程, 2012, 42(增刊 2): 607) [6] Wang J Y, Li Z Q, Fan G L, et al. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater, 2012, 66(8): 594 [7] Xu Z S, Shi X L, Zhai W Z, et al. Preparation and tribological properties of TiAl matrix composites reinforced by multilayer gra鄄 phene. Carbon, 2014, 67: 168 [8] Kumar K K A, Pillai U T S, Pai B C, et al. Dry sliding wear be鄄 havior of Mg鄄鄄 Si alloys. Wear, 2013, 303(1鄄2): 56 [9] Yolshina L A, Muradymow R V, Korsun I V, et al. Novel alumi鄄 num鄄graphene and aluminum鄄鄄 graphite metallic composite materi鄄 als: synthesis and properties. J Alloys Compd, 2016, 663: 449 [10] Bastwros M, Kim G Y, Zhu C, et al. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi鄄solid sintering. Composites Part B, 2014, 60: 111 [11] Boostani A F, Tahamtan S, Jiang Z Y, et al. Enhanced tensile properties of aluminium matrix composites reinforced with gra鄄 phene encapsulated SiC nanoparticles. Composites Part A, 2015, 68: 155 [12] Shin S E, Bae D H. Deformation behavior of aluminum alloy ma鄄 trix composites reinforced with few鄄layer graphene. Composites Part A, 2015, 78: 42 [13] Qi T J, Yu Z M, Xu Z P, et al. Preparation and mechanical properties of graphene reinforced aluminum composites. J Harbin Univ Sci Technol, 2015, 20(3): 61 (齐天娇, 俞泽民, 许志鹏, 等. 石墨烯增强铝基复合材料制 备及力学性能研究. 哈尔滨理工大学学报, 2015, 20(3): 61) [14] Xu Y C. Research on Friction and Wear and Cutting Performance of Graphene/ Al鄄鄄Si Composites [Dissertation]. Shenyang: Shen鄄 yang Ligong University, 2018 (徐运超. 石墨烯/ Al鄄鄄 Si 复合材料摩擦磨损及切削特性的研 究[学位论文]. 沈阳: 沈阳理工大学, 2018) [15] Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nano鄄 tubes and graphene nanosheets. Mater Sci Eng R, 2013, 74 (10): 281 [16] Rong X D, Huang L J, Wang B, et al. Effects of heat treatment on microstructure and properties of TiBw / Ti60 composites with network microstructure. Acta Mater Compos Sin, 2015, 32(6): 1729 (戎旭东, 黄陆军, 王博, 等. 热处理对网状结构 TiBw / Ti60 复合材料组织与性能的影响. 复合材料学报, 2015, 32(6): 1729) [17] Yang Q, Xei W H, Meng S H, et al. Multi鄄scale analysis meth鄄 od of composites and damage simulation of typical component un鄄 der tensile load. Acta Mater Compos Sin, 2015, 32(3): 617 (杨强, 解维华, 孟松鹤, 等. 复合材料多尺度分析方法与典 型元件拉伸损伤模拟. 复合材料学报, 2015, 32(3): 617) [18] Jiang L L, Xu M L, Li Z G, et al. Experimental investigation on thermo鄄physical properties of 3D braided composites. Acta Mater Compos Sin, 2017, 34(12): 2734 (姜黎黎, 徐美玲, 李振国, 等. 三维编织复合材料热物理性 能实验. 复合材料学报, 2017, 34(12): 2734) [19] Li J L, Li S S, Fan Z Z, et al. Preparation of super high strength bulk nanocrystalline Al by cryomilling. Chin J Nonferrous Met, 2013, 23(5): 1182 (李炯利, 厉沙沙, 樊振中, 等. 低温球磨制备超高强度块体 纳米晶纯铝. 中国有色金属学报, 2013, 23(5): 1182) ·1167·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有