最值问题 闭区间上的连续函数必定能取到最大值与最小值。 函数的最大值与最小值统称为函数的最值,使函数取到最大值 (或最小值)的点称为函数的最大值点(或最小值点),也称为函数 的最值点。 对于一个定义于闭区间[a,b]上的函数f(x)来说,区间的两个端点 a与b有可能成为它的最值点。同时,若最值点属于开区间(a,b)的话, 那它一定是函数的极值点。因此,只要找出所有f(x)的驻点与使f(x) 不存在的点,再加上区间的端点,从中找出使函数取最大值或最小值 的点就可以了。最值问题 闭区间上的连续函数必定能取到最大值与最小值。 函数的最大值与最小值统称为函数的最值,使函数取到最大值 (或最小值)的点称为函数的最大值点(或最小值点),也称为函数 的最值点。 对于一个定义于闭区间[ ,ba ]上的函数 f x( )来说,区间的两个端点 a与b 有可能成为它的最值点。同时,若最值点属于开区间( ,ba )的话, 那它一定是函数的极值点。因此,只要找出所有 xf )( 的驻点与使 f x ′( ) 不存在的点,再加上区间的端点,从中找出使函数取最大值或最小值 的点就可以了