正在加载图片...
陈恒等:残余应力对金属材料局部腐蚀行为的影响 ·937· 力与腐蚀速度的关系奠定基础. sion at the microscale.J Electrochem Soc,2006,153(9):B352 [16]Oltra R,Vignal V.Recent advances in local probe techniques in 参考文献 corrosion research-Analysis of the role of stress on pitting sen- sitivity.Corros Sci,2007,49(1):158 [1]Gong M.Metallic Corrosion Theory and Corrosion Control.Bei- jing:Chemical Industry Press,2009 [17]Long F Y,Yang Y,Wang S L,et al.Microscale electrochemical (龚敏.金属腐蚀理论及腐蚀控制.北京:化学工业出版社, measurement technology and its application in corrosion.Corros 2009) Sci Prot Technol,2015,27(2):194 [2]Li X G.An Introduction to Corrosion and Protection of Materials. (龙凤仪,杨燕,王树立,等.微区电化学测量技术及其在腐 蚀中的应用.腐蚀科学与防护技术,2015,27(2):194) 2nd ed.Beijing:China Machine Press,2017 (李晓刚.材料腐蚀与防护概论.2版.北京:机械工业出版 [18]Vieira L,Lucas F L C,Fisssmer S F,et al.Scratch testing for 社,2017) micro-and nanoscale evaluation of tribocharging in DLC films [3]Gutman.Mechanical Chemistry and Corrosion Protection of Metals. containing silver nanoparticles using AFM and KPFM techniques. Beijing:Science Press,1989 Surf Coat Technol,2014,260:205 (古特曼.金属力学化学与腐蚀防护.北京:科学出版社, [19]Marques A G,Izquierdo J,Souto R M,et al.SECM imaging of the cut edge corrosion of galvanized steel as a function of pH. 1989) [4]Rao S X,Zhu L Q,Li D,et al.Effects of mechanochemistry to Electrochim Acta,2015,153:238 the pitting behaviour of LY12CZ aluminum alloy.Chin Soc Cor- [20]Mouanga M,Puiggali M,Devos O.ElS and LEIS investigation of os Prot,2007,27(4):228 aging low carbon steel with Zn-Ni coating.Electrochim Acta, (饶思贤,朱立群,李获,等.力学化学效应对LY12CZ铝合 2013,106:82 金点蚀行为的影响.中国腐蚀与防护学报,2007,27(4): [21]Simoes A M,Bastos A C,Ferreira M G,et al.Use of SVET and 228) SECM to study the galvanic corrosion of an iron-zine cell.Corros [5]Gutman E M,Solovioff G,Eliezer D.The mechanochemical be- Sc,2007,49(2):726 haviour of type 316L stainless steel.Corros Sci,1996,38(7): [22]Wang F Y,Mao K M,Li B.Prediction of residual stress fields 1141 from surface stress measurements.Int J Mech Sci,2018,140:68 [6]Xiao J M,Cao C N.Principle of Material Corrosion.Beijing: [23]Rae W,Lomas Z.Jackson M,et al.Measurements of residual Chemical Industry Press,2002 stress and microstructural evolution in electron beam welded Ti- (肖纪美,曹楚南.材料腐蚀学原理.北京:化学工业出版社, 6Al-4V using multiple techniques.Mater Charact,2017,132: 2002) 6 [7] Meng FJ,Wang JQ,Han E,et al.The role of TiN inclusions in [24]Kartal M E,Kiwanuka R.Dunne F P E.Determination of sub- stress corrosion crack initiation for Alloy 690TT in high-tempera- surface stresses at inclusions in single crystal superalloy using ture and high-pressure water.Corros Sci,2010,52(3):928 HR-EBSD,crystal plasticity and inverse eigenstrain analysis.Int [8]Xue H B,Cheng Y F.Characterization of inclusions of X80 pipe- J Solids Struct,2015,6768:27 line steel and its correlation with hydrogen-induced cracking.Cor- [25]Salvati E,Korsunsky A M.An analysis of macro-and micro- ros Sci,2011,53(4):1201 scale residual stresses of Type I,II and Ill using FIB-DIC micro- [9]Yan YJ,Yan Y,He Y,et al.Hydrogen-induced cracking mech- ring-core milling and crystal plasticity FE modelling.Int Plast, anism of precipitation strengthened austenitic stainless steel weld- 2017,98:123 ment.Int J Hydrogen Energy,2015,40(5):2404 [26]Withers P J.Residual stress and its role in failure.Rep Prog [10]Zhang Z B,Obasi G,Morana R,et al.In-situ observation of hy- Phx,2007,70(12):2211 drogen induced crack initiation in a nickel-based superalloy. [27]Song J K,Huang X B,Gao Y K.Test and analysis technology of Seripta Mater,2017,140:40 residual stress.Surf Technol,2016,45(4):75 [11]Shen Z,Arioka K,Lozano-Pereza S.A mechanistic study of SCC (宋俊凯,黄小波,高玉魁.残余应力测试技术分析.表面技 in Alloy 600 through high-resolution characterization.Corros Sci, 术,2016,45(4):75) 2018,132:244 [28]James M N.Residual stress influences on structural reliability. [12]Zhou N,Pettersson R,Peng R L,et al.Effect of surface grind- Eng Fail Anal,2011,18(8):1909 ing on chloride induced SCC of 304L.Mater Sci Eng A,2016, [29]Withers PJ,Bhadeshia H K D H.Residual stress Part 1 meas- 658:50 urement techniques.Mater Sci Technol,2001,17(4):355 [13]Alvarez M G,Lapitz P,Ruzzante J.Analysis of acoustic emis- [30]Pan L Research on the Mechanisms and Related Experiments of sion signals generated from SCC propagation.Corros Sci,2012, Controlling Residual Stress in Carbon Steel based on Pulse Current 55:5 Method [Dissertation ]Hanghou:Zhejiang University,2016 [14]Masuda H.SKFM observation of SCC on SUS304 stainless steel. (潘龙.脉冲电流法调控碳钢残余应力的机理及相关实验研 Corros Sci,2007,49(1):120 究[学位论文].杭州:浙江大学,2016) [15]Vignal V,Mary N,Oltra R,et al.A mechanical-electrochemical [31] Groth B P,Langan S M,Haber R A,et al.Relating residual approach for the determination of precursor sites for pitting corro- stresses to machining and finishing in silicon carbide.Ceram Int,陈 恒等: 残余应力对金属材料局部腐蚀行为的影响 力与腐蚀速度的关系奠定基础. 参 考 文 献 [1] Gong M. Metallic Corrosion Theory and Corrosion Control. Bei鄄 jing: Chemical Industry Press, 2009 (龚敏. 金属腐蚀理论及腐蚀控制. 北京: 化学工业出版社, 2009) [2] Li X G. An Introduction to Corrosion and Protection of Materials. 2nd ed. Beijing: China Machine Press, 2017 (李晓刚. 材料腐蚀与防护概论. 2 版. 北京: 机械工业出版 社, 2017) [3] Gutman. Mechanical Chemistry and Corrosion Protection of Metals. Beijing: Science Press, 1989 (古特曼. 金属力学化学与腐蚀防护. 北京: 科学出版社, 1989) [4] Rao S X, Zhu L Q, Li D, et al. Effects of mechanochemistry to the pitting behaviour of LY12CZ aluminum alloy. J Chin Soc Cor鄄 ros Prot, 2007, 27(4): 228 (饶思贤, 朱立群, 李荻, 等. 力学化学效应对 LY12CZ 铝合 金点蚀行为的影响. 中国腐蚀与防护学报, 2007, 27 (4 ): 228) [5] Gutman E M, Solovioff G, Eliezer D. The mechanochemical be鄄 haviour of type 316L stainless steel. Corros Sci, 1996, 38 (7 ): 1141 [6] Xiao J M, Cao C N. Principle of Material Corrosion. Beijing: Chemical Industry Press, 2002 (肖纪美, 曹楚南. 材料腐蚀学原理. 北京: 化学工业出版社, 2002) [7] Meng F J, Wang J Q, Han E, et al. The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high鄄tempera鄄 ture and high鄄pressure water. Corros Sci, 2010, 52(3): 928 [8] Xue H B, Cheng Y F. Characterization of inclusions of X80 pipe鄄 line steel and its correlation with hydrogen鄄induced cracking. Cor鄄 ros Sci, 2011, 53(4): 1201 [9] Yan Y J, Yan Y, He Y, et al. Hydrogen鄄induced cracking mech鄄 anism of precipitation strengthened austenitic stainless steel weld鄄 ment. Int J Hydrogen Energy, 2015, 40(5): 2404 [10] Zhang Z B, Obasi G, Morana R, et al. In鄄situ observation of hy鄄 drogen induced crack initiation in a nickel鄄based superalloy. Scripta Mater, 2017, 140: 40 [11] Shen Z, Arioka K, Lozano鄄Pereza S. A mechanistic study of SCC in Alloy 600 through high鄄resolution characterization. Corros Sci, 2018, 132: 244 [12] Zhou N, Pettersson R, Peng R L, et al. Effect of surface grind鄄 ing on chloride induced SCC of 304L. Mater Sci Eng A, 2016, 658: 50 [13] Alvarez M G, Lapitz P, Ruzzante J. Analysis of acoustic emis鄄 sion signals generated from SCC propagation. Corros Sci, 2012, 55: 5 [14] Masuda H. SKFM observation of SCC on SUS304 stainless steel. Corros Sci, 2007, 49(1): 120 [15] Vignal V, Mary N, Oltra R, et al. A mechanical鄄electrochemical approach for the determination of precursor sites for pitting corro鄄 sion at the microscale. J Electrochem Soc, 2006, 153(9): B352 [16] Oltra R, Vignal V. Recent advances in local probe techniques in corrosion research———Analysis of the role of stress on pitting sen鄄 sitivity. Corros Sci, 2007, 49(1): 158 [17] Long F Y, Yang Y, Wang S L, et al. Microscale electrochemical measurement technology and its application in corrosion. Corros Sci Prot Technol, 2015, 27(2): 194 (龙凤仪, 杨燕, 王树立, 等. 微区电化学测量技术及其在腐 蚀中的应用. 腐蚀科学与防护技术, 2015, 27(2): 194) [18] Vieira L, Lucas F L C, Fisssmer S F, et al. Scratch testing for micro鄄 and nanoscale evaluation of tribocharging in DLC films containing silver nanoparticles using AFM and KPFM techniques. Surf Coat Technol, 2014, 260: 205 [19] Marques A G, Izquierdo J, Souto R M, et al. SECM imaging of the cut edge corrosion of galvanized steel as a function of pH. Electrochim Acta, 2015, 153: 238 [20] Mouanga M, Puiggali M, Devos O. EIS and LEIS investigation of aging low carbon steel with Zn鄄鄄 Ni coating. Electrochim Acta, 2013, 106: 82 [21] Sim觛es A M, Bastos A C, Ferreira M G, et al. Use of SVET and SECM to study the galvanic corrosion of an iron鄄鄄zinc cell. Corros Sci, 2007, 49(2): 726 [22] Wang F Y, Mao K M, Li B. Prediction of residual stress fields from surface stress measurements. Int J Mech Sci, 2018, 140: 68 [23] Rae W, Lomas Z, Jackson M, et al. Measurements of residual stress and microstructural evolution in electron beam welded Ti鄄鄄 6Al鄄鄄4V using multiple techniques. Mater Charact, 2017, 132: 10 [24] Kartal M E, Kiwanuka R, Dunne F P E. Determination of sub鄄 surface stresses at inclusions in single crystal superalloy using HR鄄鄄EBSD, crystal plasticity and inverse eigenstrain analysis. Int J Solids Struct, 2015, 67鄄68: 27 [25] Salvati E, Korsunsky A M. An analysis of macro鄄 and micro鄄 scale residual stresses of Type I, II and III using FIB鄄鄄DIC micro鄄 ring鄄core milling and crystal plasticity FE modelling. Int J Plast, 2017, 98: 123 [26] Withers P J. Residual stress and its role in failure. Rep Prog Phys, 2007, 70(12): 2211 [27] Song J K, Huang X B, Gao Y K. Test and analysis technology of residual stress. Surf Technol, 2016, 45(4): 75 (宋俊凯, 黄小波, 高玉魁. 残余应力测试技术分析. 表面技 术, 2016, 45(4): 75) [28] James M N. Residual stress influences on structural reliability. Eng Fail Anal, 2011, 18(8): 1909 [29] Withers P J, Bhadeshia H K D H. Residual stress Part 1 鄄鄄 meas鄄 urement techniques. Mater Sci Technol, 2001, 17(4): 355 [30] Pan L. Research on the Mechanisms and Related Experiments of Controlling Residual Stress in Carbon Steel based on Pulse Current Method [Dissertation]. Hangzhou: Zhejiang University, 2016 (潘龙. 脉冲电流法调控碳钢残余应力的机理及相关实验研 究 [学位论文]. 杭州: 浙江大学, 2016) [31] Groth B P, Langan S M, Haber R A, et al. Relating residual stresses to machining and finishing in silicon carbide. Ceram Int, ·937·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有