正在加载图片...
1933 E SCHRODINGER theory. It was therefore a memorable occasion when Hamilton made the discovery that the true movement of mass points in a field of forces(e.g. of a planet on its orbit around the sun or of a stone thrown in the gravitational field of the earth) is also governed by a very similar general principle, which carries and has made famous the name of its discoverer since then Admittedly, the Hamilton principle does not say exactly that the mass point chooses the quickest way, but it does say something so similar -the analogy with the principle of the shortest travelling time of light is so close, that one was faced with a puzzle. It seemed as if Nature had realized one and the same law twice by entirely different means: first in the case of light, b means of a fairly obvious play of rays; and again in the case of the mass points, which was anything but obvious, unless somehow wave nature were to be attributed to them also. And this, it seemed impossible to do. Becaus the"mass points"on which the laws of mechanics had really been confirmed experimentally at that time were only the large, visible, sometimes very large bodies, the planets, for which a thing like"wave nature"appeared to be out of the question. The smallest, elementary components of matter which we today, much more specifically, call"mass points", were purely hypothetical at the time It was only after the discovery of radioactivity that constant refinements of methods of measurement permitted the properties of these particles to be studied in detail, and now permit the paths of such particles to be photo- graphed and to be measured very exactly (stereophotogrammetrically)by the brilliant method of C.t. R. Wilson, As far as the measurements extend they confirm that the same mechanical laws are valid for particles as for large bodies, planets, etc. However, it was found that neither the molecule nor the individual atom can be considered as the "ultimate component": but even the atom is a system of highly complex structure. Images are formed in our minds of the structure of atoms consisting of particles, images which seem to have a certain similarity with the planetary system. It was only natural that the attempt should at first be made to consider as valid the same laws of motion that had proved themselves so amazingly satisfactory on a large scale. In other words, Hamiltons mechanics, which, as I said above, culminates in the Hamilton principle, were applied also to the "inner life of the atom. That there is a very close analogy between Hamilton's principle and Fermat's optical principle had meanwhile become all but forgotten. If it was remembered, it was considered to be nothing more than a curious trait of the mathematical theory308 1933 E. SCHRÖDINGER theory. It was therefore a memorable occasion when Hamilton made the discovery that the true movement of mass points in a field of forces (e.g. of a planet on its orbit around the sun or of a stone thrown in the gravitational field of the earth) is also governed by a very similar general principle, which carries and has made famous the name of its discoverer since then. Admittedly, the Hamilton principle does not say exactly that the mass point chooses the quickest way, but it does say something so similar - the analogy with the principle of the shortest travelling time of light is so close, that one was faced with a puzzle. It seemed as if Nature had realized one and the same law twice by entirely different means: first in the case of light, by means of a fairly obvious play of rays; and again in the case of the mass points, which was anything but obvious, unless somehow wave nature were to be attributed to them also. And this, it seemed impossible to do. Because the "mass points" on which the laws of mechanics had really been confirmed experimentally at that time were only the large, visible, sometimes very large bodies, the planets, for which a thing like "wave nature" appeared to be out of the question. The smallest, elementary components of matter which we today, much more specifically, call "mass points", were purely hypothetical at the time. It was only after the discovery of radioactivity that constant refinements of methods of measurement permitted the properties of these particles to be studied in detail, and now permit the paths of such particles to be photo￾graphed and to be measured very exactly (stereophotogrammetrically) by the brilliant method of C. T. R. Wilson. As far as the measurements extend they confirm that the same mechanical laws are valid for particles as for large bodies, planets, etc. However, it was found that neither the molecule nor the individual atom can be considered as the "ultimate component": but even the atom is a system of highly complex structure. Images are formed in our minds of the structure of atoms consisting of particles, images which seem to have a certain similarity with the planetary system. It was only natural that the attempt should at first be made to consider as valid the same laws of motion that had proved themselves so amazingly satisfactory on a large scale. In other words, Hamilton’s mechanics, which, as I said above, culminates in the Hamilton principle, were applied also to the "inner life" of the atom. That there is a very close analogy between Hamilton’s principle and Fermat’s optical principle had meanwhile become all but forgotten. If it was remembered, it was considered to be nothing more than a curious trait of the mathematical theory
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有