正在加载图片...
HCo+>(Ha"+kma"-)Am cosmo+ Bm sin mp )1)=f(p) (Ha +kmd")Am=f()cos modo=sin p cos mado q qp 丌2(1+m)2(m-1)2(m-1)2(m+ 丌2k+12k 丌2k+12k-1) 丌4k q (h"+km-)Bnm=兀 f(o)sin modo p sin madp=2 (m=1) B q 1) 2(Ha+k) )/(Ha2+kmd l(,q) H2加+行Sm0 cos 2np za2m1(4k2-1)(Ha+2mk)( )( cos sin )]} ( ) 1 1 HC0 Ha k ma Am m Bm m f  m m m = + + + = −  =      d q  = 0 sin 2     HC f d  = 2 0 0 ( ) 2 1    0 2 con q = −  q = H q  C0 =      Ha kma Am f m d m m ( )cos 1 ( ) 0 1  + = −      m d q sin cos 0  = ] 2( 1) ( 1) 2( 1) ( 1) 2( 1) 1 2(1 ) 1 [ 1 1 + − − − − + − − + = − + m m m m q m m  ] 2 1) 1 2 1 1 [ − − + = k k q  4 1 2 1 ] 2 1) 1 2 1 1 [ 2 − = − − − + = k q k k q        Ha kma Bm f m d m m ( )sin 1 ( ) 0 1  + = −      m d q sin sin 0  =      = = 0 ( 1) ( 1) 2 m m  )/( ) 4 1 2 1 ( 2 2 1 2 − + − = − k k m Ha kma k q A         n a k Ha nk q Ha k q H q u n n n cos2 (4 1)( 2 ) 2 sin 2( ) ( , ) 2 1 2 2 1 − + − + = + −  =  2( ) 1 Ha k q B + =
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有