Based on preliminary survey results, excavations of the pipe system are made to inspect the pipe for corrosion At each location, the pipe is cleaned and evaluated for uniform and pitting corrosion. Of concern for pipelines are the deepest pits and penetrations. Statistical analysis of the system is performed. Typically, greater than 95% of the pipe is in good condition with sufficient original wall thickness. By defining the corrosion exposure and understanding the exposure, personnel can then make informed decisions about extending the life of the buried infrastructure or developing replacement options. By applying proven technologies such as cathodic protection, corrosion can be arrested and infrastructure can remain in service for 50-plus years without failures and downtime Example 4: Structural Epoxy Rehabilitation of Steel and Reinforced Concrete Structures. Hydrogen sulfide gas is very aggressive to reinforced concrete structures in wastewater treatment plants. Figure 5 provides views of severe corrosion of a wastewater tunnel structure. Note the failed lining repairs. Structures of concern are sludge storage tanks, chambers, and head works structures. Typically, up to 15 cm(6 in. )of concrete corrosion loss has been found on many structures, affecting both structural integrity and function Fig 5 Two views of severe corrosion of wastewater tunnel structure. Note the failed lining repairs. Courtesy ofs. Paul, CorrTech, Inc. The extent of deterioration and factors contributing to it need to be defined by inspection of pipe barrel interiors, manholes and risers, flow splitting chambers, sludge tanks, clarifiers, and tunnels associated with wastewater treatment systems. The purpose of this task is to document the location and extent of coating and concrete deterioration and corrosion of reinforcing steel Much of the existing infrastructure, both of steel and reinforced concrete construction, can be internally lined or externally coated to prevent deterioration. Linings can be used to control corrosion of the structure as well as provide structural integrity where leaks exist. Properly selected and applied high-performance epoxy can protect H2S headspace corrosion on wastewater treatment facilities and related structures. The spray-on or trowel-on high-performance structural epoxy is a proven system for these applications in the water/wastewater, Thefileisdownloadedfromwww.bzfxw.comBased on preliminary survey results, excavations of the pipe system are made to inspect the pipe for corrosion. At each location, the pipe is cleaned and evaluated for uniform and pitting corrosion. Of concern for pipelines are the deepest pits and penetrations. Statistical analysis of the system is performed. Typically, greater than 95% of the pipe is in good condition with sufficient original wall thickness. By defining the corrosion exposure and understanding the exposure, personnel can then make informed decisions about extending the life of the buried infrastructure or developing replacement options. By applying proven technologies such as cathodic protection, corrosion can be arrested and infrastructure can remain in service for 50-plus years without failures and downtime. Example 4: Structural Epoxy Rehabilitation of Steel and Reinforced Concrete Structures. Hydrogen sulfide gas is very aggressive to reinforced concrete structures in wastewater treatment plants. Figure 5 provides views of severe corrosion of a wastewater tunnel structure. Note the failed lining repairs. Structures of concern are sludge storage tanks, chambers, and head works structures. Typically, up to 15 cm (6 in.) of concrete corrosion loss has been found on many structures, affecting both structural integrity and function. Fig. 5 Two views of severe corrosion of wastewater tunnel structure. Note the failed lining repairs. Courtesy of S. Paul, CorrTech, Inc. The extent of deterioration and factors contributing to it need to be defined by inspection of pipe barrel interiors, manholes and risers, flow splitting chambers, sludge tanks, clarifiers, and tunnels associated with wastewater treatment systems. The purpose of this task is to document the location and extent of coating and concrete deterioration and corrosion of reinforcing steel. Much of the existing infrastructure, both of steel and reinforced concrete construction, can be internally lined or externally coated to prevent deterioration. Linings can be used to control corrosion of the structure as well as provide structural integrity where leaks exist. Properly selected and applied high-performance epoxy can protect H2S headspace corrosion on wastewater treatment facilities and related structures. The spray-on or trowel-on high-performance structural epoxy is a proven system for these applications in the water/wastewater, The file is downloaded from www.bzfxw.com