正在加载图片...
ANSYS非线形分析指 基本过程 载荷步,及二分等,可被激活来加强问题的收敛性,如果不能得到收敛,那么程序或者继续 计算下一个载荷前或者终止(依据你的指示) 对某些物理意义上不稳定系统的非线性静态分析,如果你仅仅使用NR方法,正切刚度 矩阵可能变为降秩短阵,导致严重的收敛问题。这样的情况包括独立实体从固定表面分离的 静态接触分析,结构或者完全崩溃或者“突然变成”另一个稳定形状的非线性弯曲问题 对这样的情况,你可以激活另外一种迭代方法,弧长方法,来帮助稳定求解。弧长方法导致 NR平衡迭代沿一段弧收敛,从而即使当正切刚度矩阵的倾斜为零或负值时,也往往阻止发 散。这种迭代方法以图形表示在图1-4中 F Converged solutions r1-ine reference arc-le Converged solutions r, r3-Subsequent arc-length radii 图1-4传统的NR方法与弧长方法的比较 非线性求解的组织级别 分线性求解被分成三个操作级别:载荷步、子步、平衡迭代 顶层”级别由在一定“时间”范围内你明确定义的载荷步组成。假定载荷在载荷步内 是线性地变化的 在每一个载荷是步内,为了逐步加载可以控制程序来执行多次求解(子步或时间步)。 在每一个子步内,程序将进行一系列的平衡迭代以获得收敛的解。 图1-5说明了一段用于非线性分析的典型的载荷历史 oad Load step 2 Subsite O Load step O Substep Load step 1 10151.752.0 图1-5载荷步、子步、及“时间” 收敛容限 当你对平衡迭代确定收敛容限时,你必须答这些问题 你想基于载荷,变形,还是联立二者来确定收敛容限? 既然径向偏移(以弧度度量)比对应的平移小,你是不是想对这些不同的条目建立不同的 收敛准则? 当你确定收敛准则时, ANSYS程序会给你一系列的选择:你可以将收敛检查建立在力 第4页ANSYS非线形分析指南 基本过程 第4页 载荷步,及二分等,可被激活来加强问题的收敛性,如果不能得到收敛,那么程序或者继续 计算下一个载荷前或者终止(依据你的指示)。 对某些物理意义上不稳定系统的非线性静态分析,如果你仅仅使用 NR 方法,正切刚度 矩阵可能变为降秩短阵,导致严重的收敛问题。这样的情况包括独立实体从固定表面分离的 静态接触分析,结构或者完全崩溃或 者“突然变成”另一个稳定形状的非线性弯曲问题。 对这样的情况,你可以激活另外一种迭代方法,弧长方法,来帮助稳定求解。弧长方法导致 NR 平衡迭代沿一段弧收敛,从而即使当正切刚度矩阵的倾斜为零或负值时,也往往阻止发 散。这种迭代方法以图形表示在图 1─4 中。 图 1─4 传统的 NR 方法与弧长方法的比较 非线性求解的组织级别 分线性求解被分成三个操作级别:载荷步、子步、平衡迭代。 ·“顶层”级别由在一定“时间”范围内你明确定义的载荷步组成。假定载荷在载荷步内 是线性地变化的。 ·在每一个载荷是步内,为了逐步加载可以控制程序来执行多次求解(子步或时间步)。 ·在每一个子步内,程序将进行一系列的平衡迭代以获得收敛的解。 图 1─5 说明了一段用于非线性分析的典型的载荷历史。 图 1─5 载荷步、子步、及“时间” 收敛容限 当你对平衡迭代确定收敛容限时,你必须答这些问题: ·你想基于载荷,变形,还是联立二者来确定收敛容限? ·既然径向偏移(以弧度度量)比对应的平移小,你是不是想对这些不同的条目建立不同的 收敛准则? 当你确定收敛准则时,ANSYS 程序会给你一系列的选择:你可以将收敛检查建立在力
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有