92 6 Elastic Constants Based on Global Coordinate System Next,the elastic modulus E,is calculated at each value of between-90 and 90 in increments of 10 using the MATLAB function Ey. >Ey1=Ey(155.0,12.10,0.248,4.40,-90) Ey1= 155 >>Ey2=Ey(155.0,12.10,0.248,4.40,-80) Ey2 86.2721 >Ey3=Ey(155.0,12.10,0.248,4.40,-70) Ey3 39.3653 >Ey4=Ey(155.0,12.10,0.248,4.40,-60) Ey4= 22.8718 >Ey5=Ey(155.0,12.10,0.248,4.40,-50) Ey5 16.2611 >Ey6=Ey(155.0,12.10,0.248,4.40,-40) Ey6= 13.3820 >>Ey7=Ey(155.0,12.10,0.248,4.40,-30) Ey7 12.2222 >>Ey8=Ey(155.0,12.10,0.248,4.40,-20)92 6 Elastic Constants Based on Global Coordinate System Next, the elastic modulus Ey is calculated at each value of θ between −90◦ and 90◦ in increments of 10◦ using the MATLAB function Ey. >> Ey1 = Ey(155.0, 12.10, 0.248, 4.40, -90) Ey1 = 155 >> Ey2 = Ey(155.0, 12.10, 0.248, 4.40, -80) Ey2 = 86.2721 >> Ey3 = Ey(155.0, 12.10, 0.248, 4.40, -70) Ey3 = 39.3653 >> Ey4 = Ey(155.0, 12.10, 0.248, 4.40, -60) Ey4 = 22.8718 >> Ey5 = Ey(155.0, 12.10, 0.248, 4.40, -50) Ey5 = 16.2611 >> Ey6 = Ey(155.0, 12.10, 0.248, 4.40, -40) Ey6 = 13.3820 >> Ey7 = Ey(155.0, 12.10, 0.248, 4.40, -30) Ey7 = 12.2222 >> Ey8 = Ey(155.0, 12.10, 0.248, 4.40, -20)