正在加载图片...
1722 R H. Jones, C.H. Henager J: /Journal of the European Ceramic Sociery 25(2005)1717-1722 mechanism map is helping us develop and understand crack 18. Zhu, Y. T, Taylor, S. T, Stout, M.G., Butt, D. P and Lowe, T growth mechanisms and to design improved composite ma C, Kinetics of thermal, passive oxidation of Nicalon fibers.J.4m. Ceram soc.,1998,81,655 19. DiCarlo, J. A, Yun, H. M, Morscher, G. N. and Goldsby, J. C. perature ceramic-matrix composites ll. Cera. Trans., 1995, 58 20. Glime, w. H. and Cawley, J. D, Stress concentration due to This research was supported by Basic Energy Sciences fiber-matrix fusion in ceramic.ms mposites. Am Ceram Soc. United States Department of Energy, under Contract no DE 998,81,2597 ACo6-76RLO 1830 with Pacific Northwest National Labo- 21. Nair, SV, Jakus, K and Lardner, T J, Mechanics of matrix cracking in fiber reinforced ceramic composites containing a viscous interface. ratory, which is operated for the U.S. Department of Energy Mech. mater 199112 229 by Battelle Memorial Institute 22. Yun, H. M. and DiCarlo, J. A, Time/temperature trength of Sic and Al203-based fibers. Ceram. References 23. Tressler, R. E and DiCarlo, J. A, Creep and rupture of advanced ce- amic fiber reinforcements, in h mperature ceramIc-matrix com 1. Henager Jr, C. H. and Jones, R, H, High-temperature plasticity ef- 24. Price, R. J, Properties of silicon carbide for nuclear fuel particle fects in bridged cracks and subcritical crack growth in ceramic com- oatings. Nucl. Technol. 1977. 35. 320 posites. Mater: Sci. Eng, 4, 1993, A166, 211 25. Scholz, R, Mueller, R. and Lesueur, D, Light ion irradiation creep of 2. Henager Jr, C. H and Jones, R. H, Subcritical crack growth in CVI Textron SCS-6 silicon carbide fibers. J. Nuc. Mater. 2002. 307-311 silicon carbide reinforced with Nicalon fibers; experiment and model. J. Am. Ceram Soc. 1994.77. 2381 26. Abbe, F, Vicens, J. and Chermant, J. L, Creep behavior and mi 3. Henager Jr, C. H, Jones, R. H, Windisch Jr, C. F, Stackpoole, M rostructural characterization of a ceramic matrix composite.J.Mater M. and Bordia, R, Time dependent, environmentally assisted crack 1989,8,1026 owth in Nicalon-fiber-reinforced SiC composites at elevated tem- 27. Chermant, J. L, Abbe, F. and Kervadec, D, On the creep of long y perature. Metall. Mater: Trans. A, 1996, 27A, 839 ceramic fibers reinforced ceramic matrix. In Creep Fract. Eng. Mater. Struc., Proc. Int. Conf. 5th, 1993, p. 371 Environmentally-induced failure mechanism mapping for conti 28. Wu, X and Holmes, J. W, Tensile creep and creep-strain recovery be- fiber, ceramic composites Ceram. Trans., 1999, 96, 351 havior of silicon carbide fiber/calcium aluminosilicate matrix ceral 5. Buckner. H. Z Angew Math. Mech. 1970. 46. 529 6. Rice, J. R, Some remarks on elastic crack-tip stress fields 29. Grathwohl, G, Meier, B and Wang, P, Creep of fiber and whisker re- Solids Struct. 1972.8. 751 inforced ceramics, glass-ceramics and glasses. Key Eng. Mater, 1995. 7. Fett, T, Mattheck, C. and Munz, D, On the calculation of 108-110,243 pening displacement from the stress intensity factor. Eng 30. Evans, A. G. and Weber, C, Creep damage in SiC/SiC composites later. Sci. Eng, A, 1996 8. Marshall, D. B, Cox, B. N. and Evans, A. G, Mechanics of matrix 31. Mumm, D. R, Morris, W, Dadkhah, M. S and Cox, B. N, Subcriti- cracking in brittle-matrix fiber composites. Acta Metall, 1985, 33 cal crack growth in ceramic composites at high temperature measured sing digital image correlation, in thermal and mechanical test meth- 9. Cox, B. N, Sridhar, N.an ods and behavior of continuousfi ber composites. ASTM Spec eeping fibers. Acta Mater, 2000, 48, 4137. ech.Pub.1997.sTP1309.102 10. Cox, B. N. and Marshall, D. B, Stable and unstable solutions for 32. Mizuno, M., Zhu, S, Kagawa, Y. and Kaya, H, Stress, strain, and bridged cracks in various specimens. Acta Metall. Mater, 1991, 39, elastic modulus behavior of Sic-fiber/SiC composites during creep and cyclic fatigue tests. Key Eng. Mater, 1997, 132-136, 1942 M.R., Cox, B N. and McMeeking, R M, Time dependent 33. Cox, B and Zok, F, Recent advances in fibrous ceramic composites growth in ceramic matrix composites with creeping fibers. Acta In Brittle Matrix Compos. 5. Proc. Int. Symp., 5th, 1997, p. 497 Mate:,1995.43.3927 34. wilshire, B, Carreno, F. and Percival, M. J. L, Tensile creep and 12. Begley, M.R., Evans, A G. and McMeeking, R. M, Creep rupture p fracture of a fiber-reinforced SiC/SiC composite. Scr. Mate in ceramic matrix composites with creeping fibers. J. Mech. Phys. 998.39.729 Sol,1995,43,72 35. Chermant, J.-L. and Boitier, G, The importance of damage and slow 13. Begley, M.R., Cox, B. N. and McMeeking, R. M, Creep crack crack growth in the creep behavior of growth with small scale bridging in ceramic matrix composites. Acta Idv Compos. Mater, 1999, 8, 77 Metall. Mater:. 1997. 45. 2897 36. Zhu, S, Mizuno, M, Kagawa, Y 14. Cox, B N, Marshall, D. B, McMeeking, R. M. and Begley, M.R., H, Creep and fatigue behavior in Hi-Nicalon-fiber-reinforced silicon Matrix cracking in ceramic matrix composites with fiber creep. Solid arbide composites at high temperatures. J. m. Ceram. Soc., 1999. Mech.4ppl.4ppl.,1997,49,353 15. Henager Jr, C. H. and Hoagland, R. G, Subcritical crack growth in 37. Tressler, R. E, Rugg, K. L, Bakis, C. E. and Lamon, J, Effects of CVI SiCf/SIC composites at elevated temperatures: Dynamic crack matrix cracking on the creep of Sic-SiC microcomposites. Key Eng wth model. Acta Materialia. 2001 Mater,1999,164/165,297 16. DiCarlo. J. A or high- 38. Evans, A G, Zok, F W, McMeeking, R. M. and Du, Z. Z, Models of mperature fiber reinforcements. Ceramurgia, 1998, 28 high-temperature, environmentally assisted embrittlement in rinO dat ion of the agron nte face ip ngea on- be aei fones 3. Hnmberitlem et mro e to r era mic a r and basis aa ceron. silicon carbide composite. J.Am. Ceram. Soc., 1997, 80, 569 Soc.,1995,78,20971722 R.H. Jones, C.H. Henager Jr. / Journal of the European Ceramic Society 25 (2005) 1717–1722 mechanism map is helping us develop and understand crack growth mechanisms and to design improved composite ma￾terials. Acknowledgements This research was supported by Basic Energy Sciences, United States Department of Energy, under Contract no. DE￾AC06-76RLO 1830 with Pacific Northwest National Labo￾ratory, which is operated for the U.S. Department of Energy by Battelle Memorial Institute. References 1. Henager Jr., C. H. and Jones, R. H., High-temperature plasticity ef￾fects in bridged cracks and subcritical crack growth in ceramic com￾posites. Mater. Sci. Eng., A, 1993, A166, 211. 2. Henager Jr., C. H. and Jones, R. H., Subcritical crack growth in CVI silicon carbide reinforced with Nicalon fibers; experiment and model. J. Am. Ceram. Soc., 1994, 77, 2381. 3. Henager Jr., C. H., Jones, R. H., Windisch Jr., C. F., Stackpoole, M. M. and Bordia, R., Time dependent, environmentally assisted crack growth in Nicalon-fiber-reinforced SiC composites at elevated tem￾perature. Metall. Mater. Trans. A, 1996, 27A, 839. 4. Lewinsohn, C. A., Henager Jr., C. H. and Jones, R. H., Environmentally-induced failure mechanism mapping for continuous- fiber, ceramic composites. Ceram. Trans., 1999, 96, 351. 5. Buckner, H., ¨ Z. Angew Math. Mech., 1970, 46, 529. 6. Rice, J. R., Some remarks on elastic crack-tip stress fields. Int. J. Solids Struct., 1972, 8, 751. 7. Fett, T., Mattheck, C. and Munz, D., On the calculation of crack opening displacement from the stress intensity factor. Eng. Fract. Mech., 1987, 27, 697. 8. Marshall, D. B., Cox, B. N. and Evans, A. G., Mechanics of matrix cracking in brittle-matrix fiber composites. Acta Metall., 1985, 33, 2013. 9. Cox, B. N., Sridhar, N. and Argento, C. R., A bridging law for creeping fibers. Acta Mater., 2000, 48, 4137. 10. Cox, B. N. and Marshall, D. B., Stable and unstable solutions for bridged cracks in various specimens. Acta Metall. Mater., 1991, 39, 579. 11. Begley, M. R., Cox, B. N. and McMeeking, R. M., Time dependent crack growth in ceramic matrix composites with creeping fibers. Acta Metall. Mater., 1995, 43, 3927. 12. Begley, M. R., Evans, A. G. and McMeeking, R. M., Creep rupture in ceramic matrix composites with creeping fibers. J. Mech. Phys. Sol., 1995, 43, 727. 13. Begley, M. R., Cox, B. N. and McMeeking, R. M., Creep crack growth with small scale bridging in ceramic matrix composites. Acta Metall. Mater., 1997, 45, 2897. 14. Cox, B. N., Marshall, D. B., McMeeking, R. M. and Begley, M. R., Matrix cracking in ceramic matrix composites with fiber creep. Solid Mech. Appl. Appl., 1997, 49, 353. 15. Henager Jr., C. H. and Hoagland, R. G., Subcritical crack growth in CVI SiCf/SiC composites at elevated temperatures: Dynamic crack growth model. Acta Materialia, 2001, 49, 3739. 16. DiCarlo, J. A., Required properties and test methods for high￾temperature ceramic fiber reinforcements. Ceramurgia, 1998, 28, 88. 17. Windisch Jr., C. F., Henager Jr., C. H., Springer, G. D. and Jones, R. H., Oxidation of the carbon interface in Nicalon-fiber-reinforced silicon carbide composite. J. Am. Ceram. Soc., 1997, 80, 569. 18. Zhu, Y. T., Taylor, S. T., Stout, M. G., Butt, D. P. and Lowe, T. C., Kinetics of thermal, passive oxidation of Nicalon fibers. J. Am. Ceram. Soc., 1998, 81, 655. 19. DiCarlo, J. A., Yun, H. M., Morscher, G. N. and Goldsby, J. C., Models for the thermostructural properties of SiC fibers, in high￾temperature ceramic-matrix composites II. Ceram. Trans., 1995, 58, 343. 20. Glime, W. H. and Cawley, J. D., Stress concentration due to fiber–matrix fusion in ceramic-matrix composites. J. Am. Ceram. Soc., 1998, 81, 2597. 21. Nair, S. V., Jakus, K. and Lardner, T. J., Mechanics of matrix cracking in fiber reinforced ceramic composites containing a viscous interface. Mech. Mater., 1991, 12, 229. 22. Yun, H. M. and DiCarlo, J. A., Time/temperature dependent tensile strength of SiC and Al2O3-based fibers. Ceram. Trans., 1996, 74, 17. 23. Tressler, R. E. and DiCarlo, J. A., Creep and rupture of advanced ce￾ramic fiber reinforcements, in high-temperature ceramic-matrix com￾posites I. Ceram. Trans., 1995, 57, 141. 24. Price, R. J., Properties of silicon carbide for nuclear fuel particle coatings. Nucl. Technol., 1977, 35, 320. 25. Scholz, R., Mueller, R. and Lesueur, D., Light ion irradiation creep of Textron SCS-6 silicon carbide fibers. J. Nucl. Mater., 2002, 307–311, 1183. 26. Abbe, F., Vicens, J. and Chermant, J. L., Creep behavior and mi￾crostructural characterization of a ceramic matrix composite. J. Mater. Sci. Lett., 1989, 8, 1026. 27. Chermant, J. L., Abbe, F. and Kervadec, D., On the creep of long ceramic fibers reinforced ceramic matrix. In Creep Fract. Eng. Mater. Struct., Proc. Int. Conf. 5th, 1993, p. 371. 28. Wu, X. and Holmes, J. W., Tensile creep and creep-strain recovery be￾havior of silicon carbide fiber/calcium aluminosilicate matrix ceramic composites. J. Am. Ceram. Soc., 1993, 76, 2695. 29. Grathwohl, G., Meier, B. and Wang, P., Creep of fiber and whisker re￾inforced ceramics, glass-ceramics and glasses. Key Eng. Mater., 1995, 108–110, 243. 30. Evans, A. G. and Weber, C., Creep damage in SiC/SiC composites. Mater. Sci. Eng., A, 1996, A208, 1. 31. Mumm, D. R., Morris, W., Dadkhah, M. S. and Cox, B. N., Subcriti￾cal crack growth in ceramic composites at high temperature measured using digital image correlation, in thermal and mechanical test meth￾ods and behavior of continuous-fiber ceramic composites. ASTM Spec. Tech. Publ., 1997, STP 1309, 102. 32. Mizuno, M., Zhu, S., Kagawa, Y. and Kaya, H., Stress, strain, and elastic modulus behavior of SiC-fiber/SiC composites during creep and cyclic fatigue tests. Key Eng. Mater., 1997, 132–136, 1942. 33. Cox, B. and Zok, F., Recent advances in fibrous ceramic composites. In Brittle Matrix Compos. 5, Proc. Int. Symp., 5th, 1997, p. 497. 34. Wilshire, B., Carreno, F. and Percival, M. J. L., Tensile creep and creep fracture of a fiber-reinforced SiC/SiC composite. Scr. Mater., 1998, 39, 729. 35. Chermant, J.-L. and Boitier, G., The importance of damage and slow crack growth in the creep behavior of ceramic matrix composites. Adv. Compos. Mater., 1999, 8, 77. 36. Zhu, S., Mizuno, M., Kagawa, Y., Cao, J., Nagano, Y. and Kaya, H., Creep and fatigue behavior in Hi-Nicalon-fiber-reinforced silicon carbide composites at high temperatures. J. Am. Ceram. Soc., 1999, 82, 117. 37. Tressler, R. E., Rugg, K. L., Bakis, C. E. and Lamon, J., Effects of matrix cracking on the creep of SiC–SiC microcomposites. Key Eng. Mater., 1999, 164/165, 297. 38. Evans, A. G., Zok, F. W., McMeeking, R. M. and Du, Z. Z., Models of high-temperature, environmentally assisted embrittlement in ceramic￾matrix composites. J. Am. Ceram. Soc., 1996, 79, 2345. 39. Heredia, F. E., McNulty, J. C., Zok, F. W. and Evans, A. G., Oxidation embrittlement probe for ceramic matrix composites. J. Am. Ceram. Soc., 1995, 78, 2097
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有