正在加载图片...
陈丹等:金属材料内部非金属夹杂超声检测的数值模拟 ·949· 40 30 (a) 尤缺陷处 缺陷处 20 2 10 0 -10 -10 -20 -20 -30 -30 -40 -40 50 -50 -60 -60 50 1000 15002000 2500 500 1000 1500 20002500 时间/s 时s 图9实验波形对比.(a)无缺陷:(b)有缺陷 Fig.9 Experimental waveform comparison:(a)without flaw:(b)with flaw [5]Ogilvy J A.A model for the effects of inclusions on ultrasonie in- 4 结论 spection.Ultrasonics,1993,31(4):219 [6]Darmon M,Calmon P,Bele B.Modelling of the ultrasonic re- 通过建立包含夹杂物缺陷的二维钢板模型,采用 sponse of inclusions in steels /AlP Conference Proceedings.Bell- 有限元数值模拟的方法,对具有不同属性夹杂物和不 ingham,2003:101 同深度夹杂物的材料内部超声波场、超声回波时域波 7]Aggelis D G.Numerical simulation of surface wave propagation in 形、界面波、夹杂物缺陷回波和底面回波频谱分布进行 material with inhomogeneity:inclusion size effect.NDT E Int, 2009,42(6):558 了研究.对于尺寸为0.2mm×1.5mm的大型夹杂物 8]Dattal D,Kishoret NN.Features of ultrasonic wave propagation to 而言,采用中心频率为10MHz的超声波探头,可以获 identify defects in composite materials modeled by finite element 得有效的夹杂物回波信号,实现夹杂物的定位,从而为 method.NDT&E/m,1996,29(4):213 工业上采用中低频探头检测材料内部大尺寸夹杂物及 9]Liu D S,Chiou DY.Modeling of inclusions with interphases in 其成像提供可靠依据和指导.具体结论如下: heterogeneous material using the infinite element method.Comput Mater Sci,2004,31(3-4):405 (1)对不同属性夹杂物的超声检测,在时域波形 0] Autrique J C,Magoules F.Studies of an infinite element method 和频域波形上都会引起超声波形的显著变化.夹杂物 for acoustical radiation.Appl Math Modell,2006,30(7):641 与基体材料的声阻抗差异越小,通过时域和频域波形 01] Wang X D,Huang G L.Identification of embedded cracks using 进行检测的难度越大,声阻抗差异的大小是影响夹杂 back-propagating elastic waves.Inperse Pro,2004,20(5):1393 D2] 物检测的重要因素 Higdon R L.Absorbing boundary conditions for difference ap- proximations to the multi-dimensional wave equation.Math Com- (2)不同属性夹杂物对超声波的敏感频率不同. put,1986,47(176):437 与没有夹杂物时相比,夹杂物的存在使得底面回波各 03] Rose J L.Ultrasonic Wares in Solid Media.Cambridge:Cam- 频率成分的幅值均有所降低 bridge University Press,2004 (3)对不同深度夹杂物的检测,在界面波和底面 [14]Sun J G,Li S G,Li S B,et al.The transducer study of ultrason- ic in solid by finite element simulation.Sens World,2008,14 回波之间会有明显的夹杂物回波,在频谱分布上会引 (3):10 起底面回波的峰值劈裂,近表面夹杂物还会引起界面 (孙继华,李书光,李树榜,等.有限元模拟固体中超声传播 波频谱的峰值劈裂. 的换能器研究.传感器世界,2008,14(3):10) 05] Ying C F.Zhang S Y,Shen J Z.Ultrasound Scattering in Sol- 参考文献 ids.Beijing:Defense Industry Press,1994 Zhang Y,Wu JF,Miu L D.Research progress in analysis of non- (应崇福,张守玉,沈建中超声在固体中的散射.北京:国 metallic inclusions in steel.Baosteel Technol,2008(2):35 防工业出版社,1994) (张毅,郭君飞,缪乐德.钢中非金属夹杂物的分析研究进 [16]Shi Y W.Ultrasonic Testing.Beijing:Machinery Industry Press, 展.宝钢技术,2008(2):35) 2005 Jiang X S.Nonferrous Inclusion in Steel.Beijing:Metallurgy In- (史亦伟.超声检测.北京:机械工业出版社,2005) dustry Press,2011 [17]Liu D,Tumer JA.Ultrasonic backscatter in two-phase media (姜锡山.钢中非金属夹杂物.北京:治金工业出版社, and its dependency on the correlation function /Proceedings of 2011) Meetings on Acoustics.Hong Kong,2012:045004 B]Zhang L,Thomas B G.State of the art in evaluation and control of 18] QiF,Chen JJ,Wang R T.The opposite phase superposition steel cleanliness.IS//Int,2003,43(3):271 method of decreasing blind zone in ultrasonic detection.Tech 4]Atkinson H V,Shi G.Characterization of inclusions in clean Acoust,2011,30(4):325 steels:a review including the statistics of extremes methods.Prog (齐飞,陈品品,王润田.反相叠加减小超声检测盲区的方 Mater Sci,2003,48(5):457 法.声学技术,2011,30(4):325)陈 丹等: 金属材料内部非金属夹杂超声检测的数值模拟 图 9 实验波形对比. ( a) 无缺陷; ( b) 有缺陷 Fig. 9 Experimental waveform comparison: ( a) without flaw; ( b) with flaw 4 结论 通过建立包含夹杂物缺陷的二维钢板模型,采用 有限元数值模拟的方法,对具有不同属性夹杂物和不 同深度夹杂物的材料内部超声波场、超声回波时域波 形、界面波、夹杂物缺陷回波和底面回波频谱分布进行 了研究. 对于尺寸为 0. 2 mm × 1. 5 mm 的大型夹杂物 而言,采用中心频率为 10 MHz 的超声波探头,可以获 得有效的夹杂物回波信号,实现夹杂物的定位,从而为 工业上采用中低频探头检测材料内部大尺寸夹杂物及 其成像提供可靠依据和指导. 具体结论如下: ( 1) 对不同属性夹杂物的超声检测,在时域波形 和频域波形上都会引起超声波形的显著变化. 夹杂物 与基体材料的声阻抗差异越小,通过时域和频域波形 进行检测的难度越大,声阻抗差异的大小是影响夹杂 物检测的重要因素. ( 2) 不同属性夹杂物对超声波的敏感频率不同. 与没有夹杂物时相比,夹杂物的存在使得底面回波各 频率成分的幅值均有所降低. ( 3) 对不同深度夹杂物的检测,在界面波和底面 回波之间会有明显的夹杂物回波,在频谱分布上会引 起底面回波的峰值劈裂,近表面夹杂物还会引起界面 波频谱的峰值劈裂. 参 考 文 献 [1] Zhang Y,Wu J F,Miu L D. Research progress in analysis of non￾metallic inclusions in steel. Baosteel Technol,2008( 2) : 35 ( 张毅,邬君飞,缪乐德. 钢中非金属夹杂物的分析研究进 展. 宝钢技术,2008( 2) : 35) [2] Jiang X S. Nonferrous Inclusion in Steel. Beijing: Metallurgy In￾dustry Press,2011 ( 姜锡山. 钢 中 非 金 属 夹 杂 物. 北 京: 冶 金 工 业 出 版 社, 2011) [3] Zhang L,Thomas B G. State of the art in evaluation and control of steel cleanliness. ISIJ Int,2003,43( 3) : 271 [4] Atkinson H V,Shi G. Characterization of inclusions in clean steels: a review including the statistics of extremes methods. Prog Mater Sci,2003,48( 5) : 457 [5] Ogilvy J A. A model for the effects of inclusions on ultrasonic in￾spection. Ultrasonics,1993,31( 4) : 219 [6] Darmon M,Calmon P,Bele B. Modelling of the ultrasonic re￾sponse of inclusions in steels / / AIP Conference Proceedings. Bell￾ingham,2003: 101 [7] Aggelis D G. Numerical simulation of surface wave propagation in material with inhomogeneity: inclusion size effect. NDT & E Int, 2009,42( 6) : 558 [8] Dattal D,Kishoret N N. Features of ultrasonic wave propagation to identify defects in composite materials modeled by finite element method. NDT & E Int,1996,29( 4) : 213 [9] Liu D S,Chiou D Y. Modeling of inclusions with interphases in heterogeneous material using the infinite element method. Comput Mater Sci,2004,31( 3--4) : 405 [10] Autrique J C,Magoulès F. Studies of an infinite element method for acoustical radiation. Appl Math Modell,2006,30( 7) : 641 [11] Wang X D,Huang G L. Identification of embedded cracks using back-propagating elastic waves. Inverse Probl,2004,20( 5) : 1393 [12] Higdon R L. Absorbing boundary conditions for difference ap￾proximations to the multi-dimensional wave equation. Math Com￾put,1986,47( 176) : 437 [13] Rose J L. Ultrasonic Waves in Solid Media. Cambridge: Cam￾bridge University Press,2004 [14] Sun J G,Li S G,Li S B,et al. The transducer study of ultrason￾ic in solid by finite element simulation. Sens World,2008,14 ( 3) : 10 ( 孙继华,李书光,李树榜,等. 有限元模拟固体中超声传播 的换能器研究. 传感器世界,2008,14( 3) : 10) [15] Ying C F,Zhang S Y,Shen J Z. Ultrasound Scattering in Sol￾ids. Beijing: Defense Industry Press,1994 ( 应崇福,张守玉,沈建中. 超声在固体中的散射. 北京: 国 防工业出版社,1994) [16] Shi Y W. Ultrasonic Testing. Beijing: Machinery Industry Press, 2005 ( 史亦伟. 超声检测. 北京: 机械工业出版社,2005) [17] Liu D,Turner J A. Ultrasonic backscatter in two-phase media and its dependency on the correlation function / / Proceedings of Meetings on Acoustics. Hong Kong,2012: 045004 [18] Qi F,Chen J J,Wang R T. The opposite phase superposition method of decreasing blind zone in ultrasonic detection. Tech Acoust,2011,30( 4) : 325 ( 齐飞,陈晶晶,王润田. 反相叠加减小超声检测盲区的方 法. 声学技术,2011,30( 4) : 325) · 949 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有