正在加载图片...
280 A.R. Boccaccini et al. / Journal of Materials Processing Technology 169(2005)270-280 1. w. Donald, Preparation and properties applications of glass and Verbundwerkstoffe und Werkstoffverbunde, Wiley-VCH, Weinheim, lass-ceramic matrix composites, Key Eng. Mater. 108-110(1995) 2001,pp.365-369 123-144. 224]A F. Dericioglu, Y Kagawa, Mechanical behaviour of Al2O3-ZrO2 [6]V. Cannillo, C. Leonelli, A.R. Boccaccini, Numerical models for matrix optomechanical composite, thermal residual stresses in AlO borosilicate glass matrix Mater. Sci. Technol. 19(2003)1119-1124 Mater. Sci. Eng. A32 246-250 [25]RH. Doremus, Glass Science, Second ed, John Wiley Sons, New K.K. Chawla, Ceramic Matrix Co Chapman and Hall, first York. 1994 d.1993 [26]AR. Boccaccini, AJ. Strutt, K.s. Vecchio, D. Mendoza, K.K. 8A.G. Evans, F.w. Zok, Review. The physics and mechanics of Chawla, C B. Ponton, D H. Pearce, Behavior of nicalon-fiber rein- fibre-reinforced brittle matrix composites, J. Mater. Sci. 29(1994) rced glass matrix under thermal cycling conditions 3857-3896 Part A29(11)(1998)1343-1352 [9] M.D. Thouless, O. Sbaizero, L.S. Sigl, A.G. Evans, Effect of inter- 27]R C.C. Monteiro, M.MRA, Lima, Effect of compaction on ce mechanical properties on pull-out in a Sic fibre-reinforced tering of borosilicate glass/alumina composites, J. Eur. Ceram. Soc. lithium aluminum silicate glass-ceramic, J. Am. Ceram. Soc 1989)525-532 [28] M.F. Zawrah, E M.A. Hamzawy, Effect of cristobalite formation on 10 H. Hegeler, R. Bruckner, Fibre-reinforced glasses: influence of ther nterability, microstructure and properties of glass/ceramic compos- mal expansion of the glass matrix on strength and fracture toughne Ceram.Int28(2002)123-130. of the es,J. Mater.Sci.25(1990)4836-4846 229 V.N. Kurlov, V.M. Kiiko, A.A. Kolchin, S.T. Mileiko, Sapphire fibres [11] M.J. Blisset, P.A. Smith, J.A. Yeomans, Flexural mechanical prop- grown by a modified internal crystallisation method, J. Cryst. Growth erties of thermally treated unidirectional and cross-ply nicalon- 204(1999)499504. reinforced calcium aluminosilicate composites, J. Mater. Sci. 33 [30] J. Wendorff, R Janssen, N. Claussen, Model experiments on pure (1998)4181-4190 oxide composites, Mater. Sci. Eng. A250(2)(1998)186-193 [12]DD L. Chung, Composite Materials: Science and Applications, 31]KK. Chawla, M.K. Ferber, Z.R. Xu, R. Venkatesh, Interface engi- Springer, London/Berlin/Heidelberg, 2003 neering in alumina/glass composites, Mater. Sci Eng. A162(1993 [13]PN. Kumta, Processing aspects of glass-nicalon fibre and intercon- nected porous aluminium nitride ceramic and glass composites, J 32]R w. Goettler, K.T. Faber, Interfacial shear stresses in SiC and Mater.Sci.31(1996)62296240. fibre reinforced glasses, Ceram. Eng. Sci. Proc. 9(7-8)( (1988) [14]J.A. Rice, C S. Hazelton, M.J. Haun, Optimisation of the electrical 86l-870. nd mechanical properties of a low dielectric loss, continuous fibre 33] D.H. Pearce, A.J. Jickells, C B. Ponton, Fabrication of sapphire fibre ceramic composite, Ceram. Trans. 74(1996)497-508 reinforced ceramic matrix composite, Br. Ceram. Trans. 95(4)(1996) [15]T. Leutbecher, D. Hulsenberg, Oxide fibre reinforced glass: a 141-145 hallenge to new composites, Adv. Eng. Mater. 2(2000)9 [34] Schott Technical Glasses, Company information bulletin, 1982 35] Properties and benefits of sapphire for the semiconductor processing [16]B. Fankhanel, E. Muller, K. Weise, G. Marx, Translucent fibre rein- industrywww.saphikon.com,accessedon21thMay2003 forced glass, Key Eng Mater. 206-213(2002)1109-1112. B6]R. Venkatesh, KK. Chawla, Effect of interfacial roughness on fibre [17]Y. Kagawa, T. Yamada, Tensile properties of optical fibre-glass pull-out in alumina/SnO2/glass composites, J. Mater. Sci. Lett. 11 matrix sensor-based composite, J. Mater. Sci. Lett. 13(1994) 1403-1405. 37A.R. Boccaccini, P.A. Trusty, Toughening and strengthening of glass [18A. F. Dericioglu, S. Zhu, Y. Kagawa, Improvement of fracture resis- by Al2O3 platelets, J. Mater. Sci. Lett. 15(1996)60-63 tance in a glass matrix optomechanical composite reinforced by 38] H.s. Kim, Ph D. Thesis, Imperial College, University of London, Al2O3-ZrO2 mi osite, Ceram. Eng. Sci. Proc. 23(2002) 989,p.85 39]AR. Boccaccini, E.A. Olevsky, Processing of platelet-reinforced [19]H. Iba, T. Chang, Y. Kagawa, H. Minakuchi, K. Kanamaru, Fab- glass matrix composites: effect of inclusions on sintering anisotropy, rication of optically transparent short fibre-reinforced glass matrix J Mater Process. Technol. 96(1999)92-101 mposites,J.Am. Ceram Soc. 79(1996)881-884 40]G W. Scherer, Sintering with rigid inclusions, J. Am. Ceram. Soc. 20] P. Kangutkar, T. Chang, Y. Kagawa, M.J. Koczak, H. Minakuchi, K 70(1987)719-725 Kanamaru, Fabrication of optically transparent SiCaoN fiber rein- [41] M.N. Rahaman, L.C. De Jonghe, Effect of rigid inclusions on the forced glass matrix composites, Ceram. Eng. Sci. Proc. 14(9-10) tering of glass powder compacts, J. Am. Ceram Soc. 70(1987) 1993)963-970. 21]D. Banerjee, H. Rho, H.E. Jackson, R.N. Singh, Characterization of [42]AR. Boccaccini, D H. Pearce, P.A. Trusty, Pressureless sinter- esidual stresses in a sapphire-fibre-reinforced glass-matrix compos ing and characterization of Al2O3-platelet reinforced barium- ite by micro-fluorescence spectroscopy, Compos. Sci. Technol. 61 agnesium-aluminosilicate glass-ceramic composites, Composites (2001)16391647. atA28A(1997)505-510. 22]AR Boccaccini, S. Atiq, G. Helsh, Optomechanical glass matrix [43] M.M. Lima, R Monteiro, Characterisation and thermal behaviour o composites, Compos. Sci. Technol. 63(2003)779-783 a borosilicate glass, Thermochim. Acta 373(2001)69-74 23]D. Huelsenberg, P. Feehling, T. Mache, V. Winkler, D. Raab, A.R. [44] A.F. Dericioglu, Y. Kagawa, Fail-safe light transmitting SiC fiber- Boccaccini, Herstellung und charakterisierung neuer faserverstaerkter einforced spinel matrix optomechanical composite, J. Mater. Sci. 37 glasmatrix-verbundwerkstoffe, in: B. Wielage, G. Leonhardt(Eds ) (2002)523-530.280 A.R. Boccaccini et al. / Journal of Materials Processing Technology 169 (2005) 270–280 [5] I.W. Donald, Preparation and properties applications of glass and glass-ceramic matrix composites, Key Eng. Mater. 108–110 (1995) 123–144. [6] V. Cannillo, C. Leonelli, A.R. Boccaccini, Numerical models for thermal residual stresses in Al2O3 platelets/borosilicate glass matrix composites, Mater. Sci. Eng. A323 (2002) 246–250. [7] K.K. Chawla, Ceramic Matrix Composites, Chapman and Hall, first ed., 1993. [8] A.G. Evans, F.W. Zok, Review. The physics and mechanics of fibre-reinforced brittle matrix composites, J. Mater. Sci. 29 (1994) 3857–3896. [9] M.D. Thouless, O. Sbaizero, L.S. Sigl, A.G. Evans, Effect of inter￾face mechanical properties on pull-out in a SiC fibre-reinforced lithium aluminum silicate glass-ceramic, J. Am. Ceram. Soc. 72 (1989) 525–532. [10] H. Hegeler, R. Bruckner, Fibre-reinforced glasses: influence of ther- ¨ mal expansion of the glass matrix on strength and fracture toughness of the composites, J. Mater. Sci. 25 (1990) 4836–4846. [11] M.J. Blisset, P.A. Smith, J.A. Yeomans, Flexural mechanical prop￾erties of thermally treated unidirectional and cross-ply nicalon￾reinforced calcium aluminosilicate composites, J. Mater. Sci. 33 (1998) 4181–4190. [12] D.D.L. Chung, Composite Materials: Science and Applications, Springer, London/Berlin/Heidelberg, 2003. [13] P.N. Kumta, Processing aspects of glass-nicalon fibre and intercon￾nected porous aluminium nitride ceramic and glass composites, J. Mater. Sci. 31 (1996) 6229–6240. [14] J.A. Rice, C.S. Hazelton, M.J. Haun, Optimisation of the electrical and mechanical properties of a low dielectric loss, continuous fibre ceramic composite, Ceram. Trans. 74 (1996) 497–508. [15] T. Leutbecher, D. Hulsenberg, Oxide fibre reinforced glass: a challenge to new composites, Adv. Eng. Mater. 2 (2000) 93– 99. [16] B. Fankhanel, E. Muller, K. Weise, G. Marx, Translucent fibre rein￾forced glass, Key Eng. Mater. 206–213 (2002) 1109–1112. [17] Y. Kagawa, T. Yamada, Tensile properties of optical fibre-glass matrix sensor-based composite, J. Mater. Sci. Lett. 13 (1994) 1403–1405. [18] A.F. Dericioglu, S. Zhu, Y. Kagawa, Improvement of fracture resis￾tance in a glass matrix optomechanical composite reinforced by Al2O3–ZrO2 minicomposite, Ceram. Eng. Sci. Proc. 23 (2002) 485–492. [19] H. Iba, T. Chang, Y. Kagawa, H. Minakuchi, K. Kanamaru, Fab￾rication of optically transparent short fibre-reinforced glass matrix composites, J. Am. Ceram. Soc. 79 (1996) 881–884. [20] P. Kangutkar, T. Chang, Y. Kagawa, M.J. Koczak, H. Minakuchi, K. Kanamaru, Fabrication of optically transparent SiCaON fiber rein￾forced glass matrix composites, Ceram. Eng. Sci. Proc. 14 (9–10) (1993) 963–970. [21] D. Banerjee, H. Rho, H.E. Jackson, R.N. Singh, Characterization of residual stresses in a sapphire-fibre-reinforced glass-matrix compos￾ite by micro-fluorescence spectroscopy, Compos. Sci. Technol. 61 (2001) 1639–1647. [22] A.R. Boccaccini, S. Atiq, G. Helsh, Optomechanical glass matrix composites, Compos. Sci. Technol. 63 (2003) 779–783. [23] D. Huelsenberg, P. Feehling, T. Mache, V. Winkler, D. Raab, A.R. Boccaccini, Herstellung und charakterisierung neuer faserverstaerkter glasmatrix-verbundwerkstoffe, in: B. Wielage, G. Leonhardt (Eds.), Verbundwerkstoffe und Werkstoffverbunde, Wiley-VCH, Weinheim, 2001, pp. 365–369. [24] A.F. Dericioglu, Y. Kagawa, Mechanical behaviour of Al2O3–ZrO2 minicomposite reinforced glass matrix optomechanical composite, Mater. Sci. Technol. 19 (2003) 1119–1124. [25] R.H. Doremus, Glass Science, Second ed., John Wiley & Sons, New York, 1994. [26] A.R. Boccaccini, A.J. Strutt, K.S. Vecchio, D. Mendoza, K.K. Chawla, C.B. Ponton, D.H. Pearce, Behavior of nicalon-fiber rein￾forced glass matrix composites under thermal cycling conditions, Composites Part A 29 (11) (1998) 1343–1352. [27] R.C.C. Monteiro, M.M.R.A. Lima, Effect of compaction on the sin￾tering of borosilicate glass/alumina composites, J. Eur. Ceram. Soc. 23 (2003) 1813–1818. [28] M.F. Zawrah, E.M.A. Hamzawy, Effect of cristobalite formation on sinterability, microstructure and properties of glass/ceramic compos￾ites, Ceram. Int. 28 (2002) 123–130. [29] V.N. Kurlov, V.M. Kiiko, A.A. Kolchin, S.T. Mileiko, Sapphire fibres grown by a modified internal crystallisation method, J. Cryst. Growth 204 (1999) 499–504. [30] J. Wendorff, R. Janssen, N. Claussen, Model experiments on pure oxide composites, Mater. Sci. Eng. A250 (2) (1998) 186–193. [31] K.K. Chawla, M.K. Ferber, Z.R. Xu, R. Venkatesh, Interface engi￾neering in alumina/glass composites, Mater. Sci. Eng. A162 (1993) 35–44. [32] R.W. Goettler, K.T. Faber, Interfacial shear stresses in SiC and Al2O3 fibre reinforced glasses, Ceram. Eng. Sci. Proc. 9 (7–8) (1988) 861–870. [33] D.H. Pearce, A.J. Jickells, C.B. Ponton, Fabrication of sapphire fibre reinforced ceramic matrix composite, Br. Ceram. Trans. 95 (4) (1996) 141–145. [34] Schott® Technical Glasses, Company information bulletin, 1982. [35] Properties and benefits of sapphire for the semiconductor processing industry, www.saphikon.com, accessed on 21th May 2003. [36] R. Venkatesh, K.K. Chawla, Effect of interfacial roughness on fibre pull-out in alumina/SnO2/glass composites, J. Mater. Sci. Lett. 11 (1992) 650–652. [37] A.R. Boccaccini, P.A. Trusty, Toughening and strengthening of glass by Al2O3 platelets, J. Mater. Sci. Lett. 15 (1996) 60–63. [38] H.S. Kim, Ph.D. Thesis, Imperial College, University of London, 1989, p. 85. [39] A.R. Boccaccini, E.A. Olevsky, Processing of platelet-reinforced glass matrix composites: effect of inclusions on sintering anisotropy, J. Mater. Process. Technol. 96 (1999) 92–101. [40] G.W. Scherer, Sintering with rigid inclusions, J. Am. Ceram. Soc. 70 (1987) 719–725. [41] M.N. Rahaman, L.C. De Jonghe, Effect of rigid inclusions on the sintering of glass powder compacts, J. Am. Ceram. Soc. 70 (1987) C348–C351. [42] A.R. Boccaccini, D.H. Pearce, P.A. Trusty, Pressureless sinter￾ing and characterization of Al2O3-platelet reinforced barium– magnesium–aluminosilicate glass–ceramic composites, Composites Part A 28A (1997) 505–510. [43] M.M. Lima, R. Monteiro, Characterisation and thermal behaviour of a borosilicate glass, Thermochim. Acta 373 (2001) 69–74. [44] A.F. Dericioglu, Y. Kagawa, Fail-safe light transmitting SiC fiber￾reinforced spinel matrix optomechanical composite, J. Mater. Sci. 37 (2002) 523–530
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有