正在加载图片...
D0I:10.13374/1.issm100103.2008.03.008 第30卷第3期 北京科技大学学报 Vol.30 No.3 2008年3月 Journal of University of Science and Technology Beijing Mar,2008 钢管张力减径过程传热模型 陈万里)姜泽毅) 张欣欣)张海燕) 1)北京科技大学机械工程学院,北京1000832)上海宝钢分公司钢管厂,上海201900 摘要为了提高钢管张力减径过程的轧制质量、降低能耗以及控制终轧温度的准确性,从而为钢管出炉温度提供科学设定 依据,通过对传热机理分析,建立了钢管张力减径过程传热模型,给出了除鳞、轧制及空冷阶段钢管边界热流的计算式·基于 塑性材料的变分原理,建立了轧制变形区的变形热计算模型.结果表明:变形热对钢管温度分布影响不可忽略;该模型能真实 反映钢管在张力减径过程中的温度变化,与实测结果吻合较好,可用于钢管再加热和张力减径过程中的参数分析及工艺 优化· 关键词钢管:张力减径;传热模型:变形热 分类号TG335.7 Heat transfer model in pipe stretch-reducing process CHEN Wanli,JIA NG Zeyi),ZHA NG Xinxin).ZHA NG Haiyan2) 1)School of Mechanical Engineering University of Science and Technology Beijing.Beijing 100083,China 2)Steel Tubing Plant.Baosteel Branch.Shanghai 201900.China ABSTRACT In order to improve the rolled quality of pipe stretch-reducing process,reduce energy consumption.exactly control fin- ishing temperature,and thus offer scientific set values to pipe tapping temperature,based on analyzing the mechanism of heat trans- fer,a mathematical model of heat transfer in pipe stretch-reducing process is derived,in which the boundary conditions in the process- es of descaling,rolling and air cooling are provided.The equation of deformation heat in rolling deformation zone is also obtained using the variation principle of plastic material.The results indicate that the effect of deformation heat on the steel pipe 's thermal distribu- tion should not be ignored.The mathematical model provided can present the pipe's temperature fluctuation and agree well with the testing values in the process of stretch-reducing.Accordingly,the model can be used in the parameter analysis and technologic opti- mization of the processes of steel pipe reheating and stretch-reducing. KEY WORDS steel pipe:stretch-reducing:heat transfer model:deformation heat 主要参数定义 g一变形热,Wm3; A一辐射与导热间的耦合系数; vx一管辊相对速度(轴向),ms一1; C,一钢管的比热容,Jkg1K1; “,一径向变形速度,ms; H一剪切变速度强度,s1; v0一周向变形速度,ms1; T。一轧辊特征温度,K; a一综合对流换热系数,Wm一2K1; Tw一高压水温度,K; &一等效对流换热系数,Wm一2k1: T∞一环境温度,K; e一表面发射率; V:一钢管出第i道机架时速度,ms1 一机架表面发射率; k一钢管的热导率,WmK一: 飞一钢管表面发射率; PR一轧制压力,Pa; q一边界热流密度,Wm一2; ,一径向线变形速度,s1; ,一轴向线变形速度,s1; 收稿日期:2006-11-25修回日期:2007-01-08 0一周向线变形速度,s1; 作者简介:陈万里(1981一),男,硕士研究生:姜泽毅(1972一),男, 副教授,博士 。一机架对钢管的角系数;钢管张力减径过程传热模型 陈万里1) 姜泽毅1) 张欣欣1) 张海燕2) 1) 北京科技大学机械工程学院‚北京100083 2) 上海宝钢分公司钢管厂‚上海201900 摘 要 为了提高钢管张力减径过程的轧制质量、降低能耗以及控制终轧温度的准确性‚从而为钢管出炉温度提供科学设定 依据‚通过对传热机理分析‚建立了钢管张力减径过程传热模型‚给出了除鳞、轧制及空冷阶段钢管边界热流的计算式.基于 塑性材料的变分原理‚建立了轧制变形区的变形热计算模型.结果表明:变形热对钢管温度分布影响不可忽略;该模型能真实 反映钢管在张力减径过程中的温度变化‚与实测结果吻合较好‚可用于钢管再加热和张力减径过程中的参数分析及工艺 优化. 关键词 钢管;张力减径;传热模型;变形热 分类号 TG335∙7 Heat transfer model in pipe stretch-reducing process CHEN W anli 1)‚JIA NG Zeyi 1)‚ZHA NG Xinxin 1)‚ZHA NG Haiyan 2) 1) School of Mechanical Engineering‚University of Science and Technology Beijing‚Beijing100083‚China 2) Steel Tubing Plant‚Baosteel Branch‚Shanghai201900‚China ABSTRACT In order to improve the rolled quality of pipe stretch-reducing process‚reduce energy consumption‚exactly control fin￾ishing temperature‚and thus offer scientific set values to pipe tapping temperature‚based on analyzing the mechanism of heat trans￾fer‚a mathematical model of heat transfer in pipe stretch-reducing process is derived‚in which the boundary conditions in the process￾es of descaling‚rolling and air cooling are provided.T he equation of deformation heat in rolling deformation zone is also obtained using the variation principle of plastic material.T he results indicate that the effect of deformation heat on the steel pipe’s thermal distribu￾tion should not be ignored.T he mathematical model provided can present the pipe’s temperature fluctuation and agree well with the testing values in the process of stretch-reducing.Accordingly‚the model can be used in the parameter analysis and technologic opti￾mization of the processes of steel pipe reheating and stretch-reducing. KEY WORDS steel pipe;stretch-reducing;heat transfer model;deformation heat 收稿日期:2006-11-25 修回日期:2007-01-08 作者简介:陈万里(1981—)‚男‚硕士研究生;姜泽毅(1972—)‚男‚ 副教授‚博士 主要参数定义 A—辐射与导热间的耦合系数; Cp—钢管的比热容‚J·kg —1·K —1 ; H—剪切变速度强度‚s —1 ; Ta—轧辊特征温度‚K; T w—高压水温度‚K; T ∞—环境温度‚K; V i—钢管出第 i 道机架时速度‚m·s —1 ; k—钢管的热导率‚W·m —1·K —1 ; PR—轧制压力‚Pa; q—边界热流密度‚W·m —2 ; qv—变形热‚W·m —3 ; v x—管辊相对速度(轴向)‚m·s —1 ; vr—径向变形速度‚m·s —1 ; vθ—周向变形速度‚m·s —1 ; α—综合对流换热系数‚W·m —2·K —1 ; αsa—等效对流换热系数‚W·m —2·K —1 ; ε—表面发射率; εf—机架表面发射率; εs—钢管表面发射率; ε · r—径向线变形速度‚s —1 ; ε · x—轴向线变形速度‚s —1 ; ε · θ—周向线变形速度‚s —1 ; ●fs—机架对钢管的角系数; 第30卷 第3期 2008年 3月 北 京 科 技 大 学 学 报 Journal of University of Science and Technology Beijing Vol.30No.3 Mar.2008 DOI:10.13374/j.issn1001-053x.2008.03.008
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有