ww.nature.com/scientificreports/ 6. Kostic, A. D et al. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune ronment. Cell Host e Microbe 14, 207-215, doi: 10. 1016/j. chom. 2013.07.007(2013). 7. Sears, C. L. Garrel S Microbes, Microbiota, and Colon Cancer Cell Host e Microbe 15, 317-328, doi: 10.1016/j 8. Schwabe, R. F. Jobin. C. The microbiome and cancer. Nat Rev Cancer 13, 800-812, doi: 10.1038/nrc3610(2013 9. Xuan, C. et al. Microbial Dysbiosis Is Associated with Human Breast Cancer. PLos ONE 9, e83744, doi: 10.1371/journal. pone.0083744(2014 10. Consortium, H. M. P. Structure, function and diversity of the healthy human microbiome Nature 486, 207-214, doi: 10.1038/ 1. Going. J. J.& Moffat, D F. Escaping from Flatland: clinical and biological aspects of human mammary duct anatomy in three mensions. The Journal of Pathology 203, 538-544, doi: 10. 1002/path 1556(2004) 12. Urbaniak, C. et aL. Microbiota of Human Breast Tissue. Applied and Environmental Microbiology 80, 3007-3014, doi: 10.112 aem.00242-14(2014) 13. LaTuga, M.S., Stuebe, A. Seed, P C. A Review of the Source and Function of Microbiota in Breast Milk. Semin Reprod Med 32, 14. Hunt, K. M. et al. Characterization of the Diversity and Temporal Stability of Bacterial Communities in Human Milk. PLOs ONE 6, e21313,doi:10.1371/ journal pone0021313(2011) 15. Banerjee, S et al. Distinct microbiological signatures associated with triple negative breast cancer. Scientific Reports 5, 1516 16.Petrakis, N L Nipple Aspirate Fluid in Epidemiologic Studies of Breast Disease. Epidemiologic Reviews 15, 188-195(1993) ancer demonstrated by time-of-flight mass spectrometry. Breast Cancer Research and Treatment 89, 149-157, doi: 10.1007/s10549- 18. Grice, E. A et al. Topographical and Temporal Diversity of the Human Skin Microbiome Science(New York, N.Y. )324, 1190-1192 o:10.1126/ scIence1171700(2009) 9. Rautio, M. et al. Reclassification of Bacteroides putredinis(Weinberg et aL, 1937)in a New Genus Alistipes gen nov, as Alistipes tredinis comb nov and Description of Alistipes finegoldii sp nov, from Human Sources. Systematic and Applied Microbiology 2-188,do:10.1078/072320203322346029(2003 activation and impaired quality of life in colorectal cancer. British Journal of Cancer 86, 1691-1696, doi: 10.1038/si bjc. 6600336(2002) b,A M. et aL. Arachidonic acid-induced gene expression in colon cancer cells. Carcinogenesis 27, 1950-1960, doi: 1 rcin/bgl023(2006) 22 Sreevalsan, S& Safe, S. REACTIVE OXYGEN SPECIES AND COLORECTAL CANCER. Current colorectal cancer reports 9, 350-357,do:10.1007/s1188013-0190-5(2013) 23. Shikano, N. et al. Uptake of 3-[125I]iodo-a-methyl-1-tyrosine into colon cancer DLD-1 cells: characterization and i natural amino acids and amino acid -like drugs. Nuclear Medicine and Biology 37, 197-204, doi: 10.1016/jnuc 009.10.011 01 sttt102,1746-1747,doi:10.1093/nci/dj4442010 25. Matsumoto, S et al. A component of polysaccharide peptidoglycan complex on Lactobacillus induced an imp turine model 2009) 6. Amelio, I, Cutruzzola, F, Antonov, A Agostini, M. Melino, G Serine and glycine metabolism in cancer. Trends in Biochemical 27. Carbonero, F, Benefiel, A C, Alizadeh-Ghamsari, A H. Gaskins, H. R Microbial rays in colonic sulfur metabolism and links with health and disease. Frontiers in Physiology 3, 448, doi: 10. 3389/phys. 2012.00448(2012) 28. Langille, M. G I et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology8,814-821,doi:10.1038/nbt676(2013 29. Mannello, F, Medda, V& Tonti, G. A Protein profile ana lysis of the breast microenvironment to differentiate healthy women from 30. Martin, R et al. Isolation of Bifidobacteria from Breast Milk and Assessment of the Bifidobacterial Population by PCR-Denaturing radient Gel Electrophoresis and Quantitative Real-Time PCR. Applied and Environmental Microbiology 75, 965-969, doi: 10.1128/ em02063-08(2009 31. Jost, T, Lacroix, C. Braegger, C. P, Rochat, F. Chassard, C. Vertical mother-neonate transfer of maternal gut bacteria via tal Microbiology16,2891-2904,doi:10.11119462-2920.12238(2014) 32. Borges-Canha, M, Portela-Cidade, J P, Dinis-Ribeiro, M, Leite-Moreira, A. F& Pimentel-Nt P Role of colonic microbiota in 33. Altschul, s carcinogenesis: A systematic review. Rev Esp Enferm Dig 107, 11, doi: 10. 17235/reed. 2015.3830/2015(2015) Gish, w, Miller, W, Myers, E W. Lipman, D. J. Basic local alignment search tool. J. Mol. BioL. 215, 403-410, 34. Inoue, D et al. Degradation of Bis(4-Hydroxyphenyl)Methane(Bisphenol F)by Sphingobium yanoikuyae Strain FM-2 Isolated from iver Water Applied and Er microbiology74,352-358,doi:10.1128/aem01708-07(2008) Aliano, K.& Davenport, T Polycyclic Aromatic Hydrocarbons and Breast Cancer: A Review of the Literature reast Care10,316-318,doi:10.1159000436956(2015) ancer research71,2466-2475,doi:10.11580008-5472can-10-1993(2011) 37. de Moreno de LeBlanc, A Perdigon, G. Reduction of b-Glucuronidase and nitroreductase activity by yoghurt in a murine colon ancer model. Biocell 29, 15-24(2005) 38. Humblot, C et al. B-Glucuronidase in human intestinal microbiota is necessary for the colonic genotoxicity of the food-borne rcinogen 2-amino-3-methylimidazo[4, 5-flquinoline in rats. Carcinogenesis 28, 2419-2425, doi: 10. 1093/carcin/bgm170(2007) 39. Kim, D.H.& Jin, Y H Intestinal bacterial beta-glucuronidase activity of patients with colon cancer. Arch Pharm Res 24, 564-567, 可amta3oli aftogianis, R, Creveling, C. Weinshilboum, R.& Weisz, J. Chapter 6: Estrogen Metabolism by Conjugation JNCI Monographs 000,113-124(2000 42. Hall, D. C Nutritional influences on estrogen metabolism. Applied Nutritional Science Reports 1, 1-8(2001) 43. Walaszek, Z, Hanausek-Walaszek, M, Minton, J. P.& Webb, T. E Dietary glucarate as anti-promoter of 7, 12-dimethylbenz(a mary tumorigenesis. Carcinogenesis 7, 1463-1466, doi: carcin/791463(1986 1238-1248,do:10.1038/ncb3058(2014) SCIENTIFIC REPORTS 6: 28061 DO1: 10.1038/srep28061 10www.nature.com/scientificreports/ Scientific Reports | 6:28061 | DOI: 10.1038/srep28061 1 0 6. Kostic, A. D. et al. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host & Microbe 14, 207–215, doi: 10.1016/j.chom.2013.07.007 (2013). 7. Sears, C. L. & Garrett, W. S. Microbes, Microbiota, and Colon Cancer. Cell Host & Microbe 15, 317–328, doi: 10.1016/j. chom.2014.02.007 (2014). 8. Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nat Rev Cancer 13, 800–812, doi: 10.1038/nrc3610 (2013). 9. Xuan, C. et al. Microbial Dysbiosis Is Associated with Human Breast Cancer. PLoS ONE 9, e83744, doi: 10.1371/journal. pone.0083744 (2014). 10. Consortium, H. M. P. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214, doi: 10.1038/ nature11234 (2012). 11. Going, J. J. & Moffat, D. F. Escaping from Flatland: clinical and biological aspects of human mammary duct anatomy in three dimensions. The Journal of Pathology 203, 538–544, doi: 10.1002/path.1556 (2004). 12. Urbaniak, C. et al. Microbiota of Human Breast Tissue. Applied and Environmental Microbiology 80, 3007–3014, doi: 10.1128/ aem.00242-14 (2014). 13. LaTuga, M. S., Stuebe, A. & Seed, P. C. A Review of the Source and Function of Microbiota in Breast Milk. Semin Reprod Med 32, 068–073, doi: 10.1055/s-0033-1361824 (2014). 14. Hunt, K. M. et al. Characterization of the Diversity and Temporal Stability of Bacterial Communities in Human Milk. PLoS ONE 6, e21313, doi: 10.1371/journal.pone.0021313 (2011). 15. Banerjee, S. et al. Distinct microbiological signatures associated with triple negative breast cancer. Scientific Reports 5, 15162, doi: 10.1038/srep15162 (2015). 16. Petrakis, N. L. Nipple Aspirate Fluid in Epidemiologic Studies of Breast Disease. Epidemiologic Reviews 15, 188–195 (1993). 17. Pawlik, T. M. et al. Significant differences in nipple aspirate fluid protein expression between healthy women and those with breast cancer demonstrated by time-of-flight mass spectrometry. Breast Cancer Research and Treatment 89, 149–157, doi: 10.1007/s10549- 004-1710-4. 18. Grice, E. A. et al. Topographical and Temporal Diversity of the Human Skin Microbiome. Science (New York, N.Y.) 324, 1190–1192, doi: 10.1126/science.1171700 (2009). 19. Rautio, M. et al. Reclassification of Bacteroides putredinis (Weinberg et al., 1937) in a New Genus Alistipes gen. nov., as Alistipes putredinis comb. nov., and Description of Alistipes finegoldii sp. nov., from Human Sources. Systematic and Applied Microbiology 26, 182–188, doi: 10.1078/072320203322346029 (2003). 20. Huang, A. et al. Serum tryptophan decrease correlates with immune activation and impaired quality of life in colorectal cancer. British Journal of Cancer 86, 1691–1696, doi: 10.1038/sj.bjc.6600336 (2002). 21. Monjazeb, A. M. et al. Arachidonic acid-induced gene expression in colon cancer cells. Carcinogenesis 27, 1950–1960, doi: 10.1093/ carcin/bgl023 (2006). 22. Sreevalsan, S. & Safe, S. REACTIVE OXYGEN SPECIES AND COLORECTAL CANCER. Current colorectal cancer reports 9, 350–357, doi: 10.1007/s11888-013-0190-5 (2013). 23. Shikano, N. et al. Uptake of 3-[125I]iodo-α-methyl-l-tyrosine into colon cancer DLD-1 cells: characterization and inhibitory effect of natural amino acids and amino acid-like drugs. Nuclear Medicine and Biology 37, 197–204, doi: 10.1016/j.nucmedbio.2009.10.011 (2010). 24. Lin, J. H. & Giovannucci, E. Sex Hormones and Colorectal Cancer: What Have We Learned So Far? Journal of the National Cancer Institute 102, 1746–1747, doi: 10.1093/jnci/djq444 (2010). 25. Matsumoto, S. et al. A component of polysaccharide peptidoglycan complex on Lactobacillus induced an improvement of murine model of inflammatory bowel disease and colitis-associated cancer. Immunology 128, 170–180, doi: 10.1111/j.1365-2567.2008.02942.x (2009). 26. Amelio, I., Cutruzzolá, F., Antonov, A., Agostini, M. & Melino, G. Serine and glycine metabolism in cancer. Trends in Biochemical Sciences 39, 191–198, doi: 10.1016/j.tibs.2014.02.004 (2014). 27. Carbonero, F., Benefiel, A. C., Alizadeh-Ghamsari, A. H. & Gaskins, H. R. Microbial pathways in colonic sulfur metabolism and links with health and disease. Frontiers in Physiology 3, 448, doi: 10.3389/fphys.2012.00448 (2012). 28. Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology 8, 814–821, doi: 10.1038/nbt.2676 (2013). 29. Mannello, F., Medda, V. & Tonti, G. A. Protein profile ana lysis of the breast microenvironment to differentiate healthy women from breast cancer patients. Expert Review of Proteomics 6, 43–60, doi: 10.1586/14789450.6.1.43 (2009). 30. Martín, R. et al. Isolation of Bifidobacteria from Breast Milk and Assessment of the Bifidobacterial Population by PCR-Denaturing Gradient Gel Electrophoresis and Quantitative Real-Time PCR. Applied and Environmental Microbiology 75, 965–969, doi: 10.1128/ aem.02063-08 (2009). 31. Jost, T., Lacroix, C., Braegger, C. P., Rochat, F. & Chassard, C. Vertical mother–neonate transfer of maternal gut bacteria via breastfeeding. Environmental Microbiology 16, 2891–2904, doi: 10.1111/1462-2920.12238 (2014). 32. Borges-Canha, M., Portela-Cidade, J. P., Dinis-Ribeiro, M., Leite-Moreira, A. F. & Pimentel-Nunes, P. Role of colonic microbiota in colorectal carcinogenesis: A systematic review. Rev Esp Enferm Dig 107, 11, doi: 10.17235/reed.2015.3830/2015 (2015). 33. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410, doi: 10.1016/S0022-2836(05)80360-2 (1990). 34. Inoue, D. et al. Degradation of Bis(4-Hydroxyphenyl)Methane (Bisphenol F) by Sphingobium yanoikuyae Strain FM-2 Isolated from River Water. Applied and Environmental Microbiology 74, 352–358, doi: 10.1128/aem.01708-07 (2008). 35. Korsh, J., Shen, A., Aliano, K. & Davenport, T. Polycyclic Aromatic Hydrocarbons and Breast Cancer: A Review of the Literature. Breast Care 10, 316–318, doi: 10.1159/000436956 (2015). 36. Cai, Z. et al. Activation of Toll-like Receptor 5 on Breast Cancer Cells by Flagellin Suppresses Cell Proliferation and Tumor Growth. Cancer Research 71, 2466–2475, doi: 10.1158/0008-5472.can-10-1993 (2011). 37. de Moreno de LeBlanc, A. & Perdigon, G. Reduction of b-Glucuronidase and nitroreductase activity by yoghurt in a murine colon cancer model. Biocell 29, 15–24 (2005). 38. Humblot, C. et al. β-Glucuronidase in human intestinal microbiota is necessary for the colonic genotoxicity of the food-borne carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline in rats. Carcinogenesis 28, 2419–2425, doi: 10.1093/carcin/bgm170 (2007). 39. Kim, D. H. & Jin, Y. H. Intestinal bacterial beta-glucuronidase activity of patients with colon cancer. Arch Pharm Res. 24, 564–567, doi: 10.1007/BF02975166 (2001). 40. Gloux, K. et al. A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proceedings of the National Academy of Sciences 108, 4539–4546, doi: 10.1073/pnas.1000066107 (2011). 41. Raftogianis, R., Creveling, C., Weinshilboum, R. & Weisz, J. Chapter 6: Estrogen Metabolism by Conjugation. JNCI Monographs 2000, 113–124 (2000). 42. Hall, D. C. Nutritional influences on estrogen metabolism. Applied Nutritional Science Reports 1, 1–8 (2001). 43. Walaszek, Z., Hanausek-Walaszek, M., Minton, J. P. & Webb, T. E. Dietary glucarate as anti-promoter of 7, 12-dimethylbenz[a] anthracene-induced mammary tumorigenesis. Carcinogenesis 7, 1463–1466, doi: 10.1093/carcin/7.9.1463 (1986). 44. Calcium-D-Glucarate. Alternative Medicine Review 7, 336–339 (2002). 45. Scheeren, F. A. et al. A cell-intrinsic role for TLR2–MYD88 in intestinal and breast epithelia and oncogenesis. Nat Cell Biol 16, 1238–1248, doi: 10.1038/ncb3058 (2014)