正在加载图片...
Z.Huang ct al./oural of nformation&Computational Science 7:1(2010)16 9 SIGGRAPHS.New York,NY.USA.ACM (1998)37-394 用竖,A.AT-URCC ACA 网a于gD:e p York,NY,USA.ACM (19). C,USA,IEEE Computer Sorety (1999)179-186 Z. Huang et al. /Journal of Information & Computational Science 7: 1 (2010) 1–6 9 [3] Sederberg, T.W., Zheng, J., Sewell, D., Sabin, M.: Non-uniform recursive subdivision surfaces. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH’98, New York, NY, USA, ACM (1998) 387–394. [4] Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. Graph. 22 (2003) 477–484. [5] Huang, Z., Deng, J., Wang, G.: A bound on the approximation of a Catmull-Clark subdivision surface by its limit mesh. Computer Aided Geometric Design 25 (2008) 457–469. [6] M¨uller, K., Techmann, T., Fellner, D.: Adaptive ray tracing of subdivision surfaces. Computer Graphics Forum 22 (2003) 553–562. [7] Halstead, M., Kass, M., DeRose, T.: Efficient, fair interpolation using Catmull-Clark surfaces. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH’93, New York, NY, USA, ACM (1993) 35–44. [8] M¨uller, K., Reusche, L., Fellner, D.: Extended subdivision surfaces: Building a bridge between NURBS and Catmull-Clark surfaces. ACM Trans. Graph. 25 (2006) 268–292. [9] M¨uller, K., Funfzig, C., Reusche, L., Hansford, D., Farin, G., Hagen, H.: Dinus: Double insertion, nonuniform, stationary subdivision surfaces. ACM Trans. Graph. 29 (2010) 25:1–25:21. [10] Qin, K., Wang, H.: Eigenanalysis and continuity of non-uniform Doo-Sabin surfaces. In: Proceed￾ings of the 7th Pacific Conference on Computer Graphics and Applications. PG’99, Washington, DC, USA, IEEE Computer Society (1999) 179–186. [11] Wang, H., Qin, K., Sun, H.: Evaluation of non-uniform Doo-Sabin surfaces. Int. J. Comput. Geometry Appl. 15 (2005) 299–324. [12] Peters, J., Reif, U.: Analysis of generalized B-spline subdivision algorithms. SIAM Journal on Numerical Analysis 35 (1998) 728–748. [13] Stam, J.: Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH’98, New York, NY, USA, ACM (1998) 395–404
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有