正在加载图片...
4.4 The mapping of a field points-to graph rooted at an object to a sequential automaton.......................... 59 4.5 Overview of MAHJONG. 61 4.6 Illustrating the null-field problem......·.············ 65 4.7 Number of abstract objects created by the allocation-site abstraction and MAHJONG.......·...···:··········· 76 4.8 Object merging in checkstyle.·.··· 76 4.9 Precision gains of M-k-type over k-type..·.··..········. 84 X4.4 The mapping of a field points-to graph rooted at an object to a sequential automaton. . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.5 Overview of Mahjong. . . . . . . . . . . . . . . . . . . . . . . . . 61 4.6 Illustrating the null-field problem. . . . . . . . . . . . . . . . . . . . 65 4.7 Number of abstract objects created by the allocation-site abstraction and Mahjong. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.8 Object merging in checkstyle. . . . . . . . . . . . . . . . . . . . . 76 4.9 Precision gains of M-k-type over k-type. . . . . . . . . . . . . . . . . 84 x
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有