的十不条件是设可积分 基时存积 本和二均满究无穷广强积分∫~f(x,g)dx的性如 故死收敛性。 称∫f(x,y)dx关于y∈cd为故死收敛的,如果ve>0,3A,当 A,A>A时,wy∈e,d,套|Af(x,y)d<e或Af(x,y)dal<e 2.故死收敛的判定 如果存在F(x),使得|f(x,列≤F(x),ⅶ≤x<+∞,Vc≤y≤d.且 ∫a~F(x)dx收敛,调∫f(x,y)dm关于y∈e,d为故死收敛的 3.连续性 +sf(x,y)dx是y∈cd上的连续函数的充分条件是f(x,y)在a 上连续且∫~f(x,y)dx关于y∈[e,d为故死收敛 4.积分交换次序 dyt+f(,yd=/td/mf(a,y)hy的充分条件是fa,y)在 a,+∞;c,d上连续且∫。f(x,y)dx关于y∈c,d为故死收敛 5.可导性 (v)=∫+f(x,y)dx在[ed上可导且r(y)=Jf(x,y)dx的 充分条件是f(x,y),f(x,y)在[a,+∞;cd上连续,∫。f(x,9)dx存在且 ∫+f(x,y)d关于y∈c,d为故死收敛 二、求解:为所题 4(1).J 解:当a≤a≤b且x≥1时0<xe-<xbe-x 接为 lim In 所计e-x=0(是)(x→+∞),而~dx收敛,故/rpe-ed收敛 从而积分x°e-d在区间a≤a≤b上故死收敛 a)d ia<a< b (i)-∞<; < ]=>?@^_`\2 +∞ a f(x, y)dx /A 1. :Bab/ c +∞ a f(x, y)dx y ∈ [c, d] #:BabA- ∀ε > 0, ∃A0, 0 A ,A>A0 ∀y ∈ [c, d], C | A A f(x, y)dx| < ε d | +∞ A f(x, y)dx| < ε. 2. :Babe) A-Æ F(x), LS |f(x, y)| F(x), ∀a x < +∞, ∀c y d. +∞ a F(x)dx ab3 +∞ a f(x, y)dx y ∈ [c, d] #:Bab 3. / +∞ a f(x, y)dx y ∈ [c, d] f7 f(x, y) Æ [a, +∞; c, d] +∞ a f(x, y)dx y ∈ [c, d] #:Bab 4. gh d c dy +∞ a f(x, y)dx = +∞ a dx d c f(x, y)dy f(x, y) Æ [a, +∞; c, d] +∞ a f(x, y)dx y ∈ [c, d] #:Bab 5. 6/ I(y) = +∞ a f(x, y)dx Æ [c, d] 6 I (y) = +∞ a fy(x, y)dx f(x, y), fy(x, y) Æ [a, +∞; c, d] +∞ a f(x, y)dx Æ +∞ a fy(x, y)dx y ∈ [c, d] #:Bab !"#$% 4.(1). +∞ 1 xαe−xdx, a α b. !"0 a α b x 1 0 < xαe−x < xb e−x &# lim x→+∞ xb e−x 1 x2 = lim x→+∞ xb+2 ex = 0 $' xb e−x = o( 1 x2 ) (x → +∞), V +∞ 1 1 x2 dx ab, : +∞ 1 xb e−xdx ab. iV +∞ 1 xαe−xdx Æjk a α b :Bab. (3) +∞ −∞ e−(x−α)2 dx (i)a<α<b (ii)−∞ <α< +∞ 4