等式 ∫f(x)tx=/(x)+/(x)k 证 性质3说明: y 1)性质3及其公式称为积分区间可加性。当f≥0 C B 时,性质3公式的几何意义就是曲边梯形面积A 的可加性如右图所示:曲边梯形AabB的面积等 于曲边梯形AacC的面积与CcbB的面积 a2 ( ) ( ) ( ) b c b a a c f x dx f x dx f x dx = + 等式 证 则有: 反之确否?) 推论(积分关于函数的单调性):若 、 为 上的可积函数,且 性质 若 在 上可积且非负,则: 这里的 、 、 是任意的大小顺序 则: 推论:若 在 , 上可积,且 、 、 , , )、若规定: 于曲边梯形 的面积与 的面积 的可加性 如右图所示:曲边梯形 的面积等 时,性质 的公式的几何意义就是曲边梯形面积 )性质 及其公式称为积分区间可加性。当 性质 说明: ( ) ( ), [ , ], ( ) ( ) . ( [ , ] 4 [ , ] ( ) 0. . ( ) ( ) ( ) [ ] [ ] 2 ( ) 0, ( ) ( ) . . . 3 1 3 0 3 = + = = − b a b a b a b c c a b a a b b a a a f x g x x a b f x d x g x d x f g a b f a b f x d x a b c f x d x f x d x f x d x f A B a b c A B f x d x f x d x f x d x AacC CcbB AabB f a b A C B c x y o 则有: 反之确否?) 推论(积分关于函数的单调性):若 、 为 上的可积函数,且 性质 若 在 上可积且非负,则: 这里的 、 、 是任意的大小顺序 则: 推论:若 在 , 上可积,且 、 、 , , )、若规定: 于曲边梯形 的面积与 的面积 的可加性 如右图所示:曲边梯形 的面积等 时,性质 的公式的几何意义就是曲边梯形面积 )性质 及其公式称为积分区间可加性。当 性质 说明: ( ) ( ), [ , ], ( ) ( ) . ( [ , ] 4 [ , ] ( ) 0. . ( ) ( ) ( ) [ ] [ ] 2 ( ) 0, ( ) ( ) . . . 3 1 3 0 3 = + = = − b a b a b a b c c a b a a b b a a a f x g x x a b f x d x g x d x f g a b f a b f x d x a b c f x d x f x d x f x d x f A B a b c A B f x d x f x d x f x d x AacC CcbB AabB f a b A C B c x y o x y o a c b C B A 则有: 反之确否?) 推论(积分关于函数的单调性):若 、 为 上的可积函数,且 性质 若 在 上可积且非负,则: 这里的 、 、 是任意的大小顺序 则: 推论:若 在 , 上可积,且 、 、 , , )、若规定: 于曲边梯形 的面积与 的面积 的可加性 如右图所示:曲边梯形 的面积等 时,性质 的公式的几何意义就是曲边梯形面积 )性质 及其公式称为积分区间可加性。当 性质 说明: ( ) ( ), [ , ], ( ) ( ) . ( [ , ] 4 [ , ] ( ) 0. . ( ) ( ) ( ) [ ] [ ] 2 ( ) 0, ( ) ( ) . . . 3 1 3 0 3 = + = = − b a b a b a b c c a b a a b b a a a f x g x x a b f x d x g x d x f g a b f a b f x d x a b c f x d x f x d x f x d x f A B a b c A B f x d x f x d x f x d x AacC CcbB AabB f a b A C B c x y o 则有: 反之确否?) 推论(积分关于函数的单调性):若 、 为 上的可积函数,且 性质 若 在 上可积且非负,则: 这里的 、 、 是任意的大小顺序 则: 推论:若 在 , 上可积,且 、 、 , , )、若规定: 于曲边梯形 的面积与 的面积 的可加性 如右图所示:曲边梯形 的面积等 时,性质 的公式的几何意义就是曲边梯形面积 )性质 及其公式称为积分区间可加性。当 性质 说明: ( ) ( ), [ , ], ( ) ( ) . ( [ , ] 4 [ , ] ( ) 0. . ( ) ( ) ( ) [ ] [ ] 2 ( ) 0, ( ) ( ) . . . 3 1 3 0 3 = + = = − b a b a b a b c c a b a a b b a a a f x g x x a b f x d x g x d x f g a b f a b f x d x a b c f x d x f x d x f x d x f A B a b c A B f x d x f x d x f x d x AacC CcbB AabB f a b A C B c x y o x y o a c b C B A x y o a c b C B A