正在加载图片...
BEH. 462/3. 962J Molecular Principles of Biomaterials Spring 2003 References De, S.K. et al. Equilibrium swelling and kinetics of pH-responsive hydrogels: Models, experiments, and simulations. Journal of Microelectromechanical Systems 11, 544-555 (2002) Tanaka, T& Fillmore, D.J. Kinetics of Swelling of Gels. Journal of Chemical Physics 70, 1214-1218(1979) 3. Zhao, B& Moore, J S Fast pH-and ionic strength-responsive hydrogels in microchannels. Langmuir 17, 4758- 4763(2001) Chornet, E& Dumitriu, S Inclusion and release of proteins from polysaccharide-based polyion complexes. Adv Drug Deliv Rev31,223-246.(1998) Zhu, Y, Gao, C, He, T, Liu, X& Shen, J Layer-by-Layer assembly to modify poly L-lactic acid )surface toward improving its cytocompatibility to human endothelial cells. Biomacromol. 4, 446-452(2003) Khopade, A J& Caruso, F. Stepwise self-assembled poly (amidoamine) dendrimer and poly(styrenesulfonate) microcapsules as sustained delivery vehicles. Biomacromolecules 3, 1154-1162(2002) Caruso, F, Trau, D, Mohwald, H& Renneberg, R Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. Langmuir 16, 1485-1488 (2000) Elbert, D L,, Herbert, C B& Hubbell, J. A. Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces. Langmuir 15, 5355-5362(1999) Wang, Y F, Gao, J.Y.& Dubin, P L Protein separation via polyelectrolyte coacervation: Selectivity and efficiency. Biotechnology Progress 12, 356-362(1996) 10. Beebe, D J et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 04,588-+(200 11. Beebe, D.J., Mensing, G. A& Walker, G M. Physics and applications of microfluidics in biology. Annual Review of Biomedical Engineering 4, 261-286(2002) 12. James, H. M.& Guth, E. Simple presentation of network theory of rubber, with a discussion of other theories. J. Pom.Sc.4.153-182(1949) 13. Flory, P J& Rehner Jr, J. Statistical mechanics of cross-linked polymer networks. I. Rubberlike elasticity J chem.Phys.11,5125201943) 14. Flory, P J& Rehner Jr, J. Statistical mechanics of cross-linked polymer networks. Il Swelling. J. Chem. Phys 11,521-526(1943) 15. Brannonpeppas, L& Peppas, N A Equilibrium Swelling Behavior of Ph-Sensitive Hydrogels. Chemical Engineering Science 46, 715-722(1991) 16. Peppas, N A& Merrill, E W. Polyvinyl-Alcohol) Hydrogels- Reinforcement of Radiation-Crosslinked Networks 17. by Crystallization. Journal of Polymer Science Part a-Polymer Chemistry 14, 441-457(1976) Ozyurek, C, Caykara, T, Kantoglu, O. Guven, O. Characterization of network structure of poly (N-vinyl 2- pyrrolidone/acrylic acid) polyelectrolyte hydrogels by swelling measurements. Journal of Polymer Science Part B- Polymer Physics38,3309-3317(2000) Lecture 9-polyelectrolyte hydrogels 17of17BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003 References 1. De, S. K. et al. Equilibrium swelling and kinetics of pH-responsive hydrogels: Models, experiments, and simulations. Journal of Microelectromechanical Systems 11, 544-555 (2002). 2. Tanaka, T. & Fillmore, D. J. Kinetics of Swelling of Gels. Journal of Chemical Physics 70, 1214-1218 (1979). 3. Zhao, B. & Moore, J. S. Fast pH- and ionic strength-responsive hydrogels in microchannels. Langmuir 17, 4758- 4763 (2001). 4. Chornet, E. & Dumitriu, S. Inclusion and release of proteins from polysaccharide-based polyion complexes. Adv Drug Deliv Rev 31, 223-246. (1998). 5. Zhu, Y., Gao, C., He, T., Liu, X. & Shen, J. Layer-by-Layer assembly to modify poly(L-lactic acid) surface toward improving its cytocompatibility to human endothelial cells. Biomacromol. 4, 446-452 (2003). 6. Khopade, A. J. & Caruso, F. Stepwise self-assembled poly(amidoamine) dendrimer and poly(styrenesulfonate) microcapsules as sustained delivery vehicles. Biomacromolecules 3, 1154-1162 (2002). 7. Caruso, F., Trau, D., Mohwald, H. & Renneberg, R. Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. Langmuir 16, 1485-1488 (2000). 8. Elbert, D. L., Herbert, C. B. & Hubbell, J. A. Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces. Langmuir 15, 5355-5362 (1999). 9. Wang, Y. F., Gao, J. Y. & Dubin, P. L. Protein separation via polyelectrolyte coacervation: Selectivity and efficiency. Biotechnology Progress 12, 356-362 (1996). 10. Beebe, D. J. et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588-+ (2000). 11. Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and applications of microfluidics in biology. Annual Review of Biomedical Engineering 4, 261-286 (2002). 12. James, H. M. & Guth, E. Simple presentation of network theory of rubber, with a discussion of other theories. J. Polym. Sci. 4, 153-182 (1949). 13. Flory, P. J. & Rehner Jr., J. Statistical mechanics of cross-linked polymer networks. I. Rubberlike elasticity. J. Chem. Phys. 11, 512-520 (1943). 14. Flory, P. J. & Rehner Jr., J. Statistical mechanics of cross-linked polymer networks. II. Swelling. J. Chem. Phys. 11, 521-526 (1943). 15. Brannonpeppas, L. & Peppas, N. A. Equilibrium Swelling Behavior of Ph-Sensitive Hydrogels. Chemical Engineering Science 46, 715-722 (1991). 16. Peppas, N. A. & Merrill, E. W. Polyvinyl-Alcohol) Hydrogels - Reinforcement of Radiation-Crosslinked Networks by Crystallization. Journal of Polymer Science Part a-Polymer Chemistry 14, 441-457 (1976). 17. Ozyurek, C., Caykara, T., Kantoglu, O. & Guven, O. Characterization of network structure of poly(N-vinyl 2- pyrrolidone/acrylic acid) polyelectrolyte hydrogels by swelling measurements. Journal of Polymer Science Part B￾Polymer Physics 38, 3309-3317 (2000). Lecture 9 – polyelectrolyte hydrogels 17 of 17
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有