证(1)的结论显然,我们只证(2) 因为f(x)=0,由 Taylor公式 f(x)=f(xo)+f'(xo)(x-1)/"(r 0(x-x0)2+o(x-x0)2) 2 x)+ (x-x0)2+o(x-x0)2) 得到 f(x)-f(x)1 0(x-x0)2) f (xa)+ (x-x (x-x0)2 因为当x→x时上式右侧第二项趋于0,所以当f"(x)<0时,由极限的 性质可知在x。点附近成立 X < X-x 所以 f(x)<f(x0), 从而f(x)在x取极大值。同样可讨论∫"(x)>0的情况。 证毕证 (1)的结论显然,我们只证(2)。 因为 0 f x ′()0 = ,由 Taylor 公式 = xfxf 0 )()( + f ′( 0 x ) !2 )( )( 0 0 xf xx ′′ +− +− 2 0 xx )( ))(( 2 0 − xxo = xf 0 )( + !2 )( 0 ′′ xf +− 2 0 xx )( ))(( 2 0 − xxo 得到 0 2 0 () ( ) ( ) fx fx x x − = − 2 0 2 0 0 )( ))(( )( !21 xx xxo xf −− ′′ + 。 因为当 0 → xx 时上式右侧第二项趋于 0,所以当 0)(′′ xf 0 < 时,由极限的 性质可知在 0 x 点附近成立 0 )( )()( 2 0 0 < − − xx xfxf , 所以 )()( 0 < xfxf , 从而 xf )( 在 0 x 取极大值。同样可讨论 0)(′′ xf 0 > 的情况。 证毕