正在加载图片...
D(y)= Jnp(a)pylx=-√E,a)da JP,(a)p(ylx=E,a)da Equations(7.24)and(7.27)can be computed using Monte Carlo or numerical integration,and the results are plotted in Fig.7.12. BPSK bound(Rayleigh) shannon bound (Rayleigh 25 Shannon bound (AWGN) 0.5 0 6 10 12 14 16 18 E/N (dB) Figure 7.12 Capacity limits of BPSK signaling on the ii.d.Rayleigh channel with perfect CSI at receiver Capacity with M-PSK/M-QAM signaling 假定信号星座中的信号等概地使用,and CSI is perfectly known to the receiver。定 义信道转移概率密度函数 P(y1x)=cexp_Iy-) N。 where c is a normalized constant.Using this expression for capacity (see (7.23)).we have CE.log,p(y.) p(y h) Since e.l-ezp为R可 p(vlx.h) p(yh)22 ()( | ,) ( ) ()( | ,) A s a A s a p a p y x E a da y p a p y x E a da        Equations (7.24) and (7.27) can be computed using Monte Carlo or numerical integration, and the results are plotted in Fig. 7.12. -2 0 2 4 6 8 10 12 14 16 18 0 0.5 1 1.5 2 2.5 3 Eb /N0 (dB) Capacity (bits/symbol) BPSK bound (Rayleigh) Shannon bound (Rayleigh) Shannon bound (AWGN) Figure 7.12 Capacity limits of BPSK signaling on the i.i.d. Rayleigh channel with perfect CSI at receiver  Capacity with M-PSK / M-QAM signaling 假定信号星座中的信号等概地使用,and CSI is perfectly known to the receiver。定 义信道转移概率密度函数 2 0 || || ( | ) exp y hx py x c N         where c is a normalized constant. Using this expression for capacity (see (7.23)), we have MQAM CSIR , , 2 ( |,) log (|) xyh p y xh C pyh        E Since 2 2 ( |,) ( |,) log log ( |) ( | ,)( ) x p y xh p y xh p y h py x hPx      
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有