正在加载图片...
·1346· 工程科学学报,第39卷,第9期 面温度高(△T,>400℃),壁面形成稳定气膜困难,且 122202-1 并未观察到“热流密度肩”(图7),因此可认为除滞止 [7]Lindeman B A,Anderson J M,Shedd T A.Predictive model for 区外,钢板壁面到达MHF前遵循过渡沸腾换热机制; heat transfer performance of oblique and normally impinging jet ar- MHF后遵循核沸腾换热机制.杨世铭与陶文铨0]分 rays.Int J Heat Mass Trans,2013,62:612 [8]Gradeck M,Kouachi A,Lebouche M,et al.Boiling curves in re- 析,随1P等测试参数增大(实验Ⅱ→实验N),贴壁 lation to quenching of a high temperature moving surface with lig- 流速增加,且过冷介质流量增加,壁面流动边界层增 uid jet impingement.Int J Heat Mass Trans,2009.52(5-6): 厚,气泡长大或破碎条件变得更加苛刻,因此核态沸腾 1094 换热机制的出现移至更低壁面过热度处. [9]Robidou H,Auracher H,Gardin P,et al.Controlled cooling of a hot plate with a water jet.Exp Therm Fluid Sci,2002,26(2-4): 4结论 123 [10]Liu Z H,Wang J.Study on film boiling heat transfer for water jet (1)射流速度、水流密度较低时(实验I),射流滞 impinging on high temperature flat plate.Int Heat Mass Trans, 止区内并未观察到膜沸腾换热机制,随距滞止点距离 2001,44(13):2475 增加,MHF向低壁面过热度处移动:平行流区内观察 [11]Li J,Zhao D W,Liu X H,et al.Development of low cost Q345 到混合换热和“热流密度肩”现象,随热流密度降至 high strength heavy steel plate.Mater Mech Eng,2009,33 Leidenfrost点,“热流密度肩”消失. (10):68 (2)随射流速度、水流密度增加(实验Ⅱ→实验 (李婧,赵德文,刘相华,等.低成本Q345钢高强度厚板的 开发.机械工程材料,2009,33(10):68) Ⅲ),滞止区热流密度增加明显:当射流速度、水流密 [12]Fu T L,Wang Z D,Li Y,et al.The influential factor studies on 度继续增加(实验Ⅲ→实验N),滞止区热流密度变化 the cooling rate of roller quenching for ultra heavy plate.Appl 不明显,表明钢板表面换热逐渐接近极限.沸腾曲线 Therm Eng,2014,70(1):800 显示,换热过程依次经历过渡沸腾→核态沸腾→强制 [13]Leocadio H,Passos J C,da Silva A F C.Heat transfer behavior 对流换热。 of a high temperature steel plate cooled by a subcooled impinging (3)实验Ⅱ/实验Ⅲ/实验W条件下,滞止区沸腾 circular water jet /7th ECI International Conference on Boiling Heat Transfer.Santa Catarina,2009:429 曲线MHF对应的壁面过热度不随射流速度、水流密度 [14]Woodfield P L.Mozumder A K,Monde M.On the size of the 等参数变化:而平行流区内随上述参数的增大,MHF boiling region in jet impingement quenching.Int J Heat Mass 移至更低壁面过热度处,这与过渡沸腾结束、核态沸腾 Trans,2009,52(1-2):460 开始的壁面换热条件有关. [15]Mozumder A K,Monde M,Woodfield P L,et al.Maximum heat flux in relation to quenching of a high temperature surface with liquid jet impingement.Int Heat Mass Trans,2006,49(17- 参考文献 18):2877 [1]Wang H M,Yu W,Cai Q W.Experimental study of heat transfer [16]Monde M,Kitajima K,Inoue T,et al.Critical heat flux in a coefficient on hot steel plate during water jet impingement cooling. forced convective subcooled boiling with an impinging jet(Effect JMater Process Technol,2012,212(9):1825 of Subcooling).Trans Jpn Soc Mech Eng Ser B,1994,60 [2]Malinowski Z,Telejko T,Hadala B,et al.Dedicated three di- (571):932 mensional numerical models for the inverse determination of the (門出政則,北岛健一郎,井上利明,李之.衡突噴流沸騰 heat flux and heat transfer coefficient distributions over the metal 系)臨界熱流束.日本機械學會論文集(B謞),1994,60 plate surface cooled by water.Int J Heat Mass Trans,2014,75: (571):932) 347 [17]Li D F.Boiling Water Heat Transfer during Quenching of Steel [3]Li X T,Wang M T,Du F S.A coupled thermal mechanical and Plates and Tubes Dissertation ]Vancouver:University of microstructural FE model for hot strip continuous rolling process British Columbia,2003 and verification.Mater Sci Eng A.2005,408(1-2):33 [18]Hernandez-Avila V H.Modeling of the Thermal Erolution of Steel [4]Karwa N,Gambaryan-Roisman T,Stephan P,et al.Experimental Strips Cooled in the Hot Rolling Runout Table [Dissertation]. investigation of circular free-surface jet impingement quenching: Vancouver:University of British Columbia,2000 transient hydrodynamics and heat transfer.Exp Therm Fluid Sci, [19]Hall D E,Incropera F P,Viskanta R.Jet impingement boiling 2011,35(7):1435 from a circular free-surface jet during quenching:Part 1-single [5]Karwa N,Stephan P.Experimental investigation of free-surface jet phase jet.Heat Trans,2001,123:901 impingement quenching process.Int Heat Mass Trans,2013, [20]Yang S M.Tao W Q.Heat Transfer.4th Ed.Beijing:Higher 64:1118 Education Press,2006 [6]Wang L,Sunden B,Borg A,et al.Heat transfer characteristics of (杨世铭,陶文铨。传热学.4版.北京:高等教育出版社, an impinging jet in crossflow.J Heat Trans,2011,133 (12): 2006)工程科学学报,第 39 卷,第 9 期 面温度高(驻Tsat > 400 益 ),壁面形成稳定气膜困难,且 并未观察到“热流密度肩冶 (图 7),因此可认为除滞止 区外,钢板壁面到达 MHF 前遵循过渡沸腾换热机制; MHF 后遵循核沸腾换热机制. 杨世铭与陶文铨[20] 分 析,随 vJ、籽W等测试参数增大(实验域寅实验郁),贴壁 流速增加,且过冷介质流量增加,壁面流动边界层增 厚,气泡长大或破碎条件变得更加苛刻,因此核态沸腾 换热机制的出现移至更低壁面过热度处. 4 结论 (1)射流速度、水流密度较低时(实验玉),射流滞 止区内并未观察到膜沸腾换热机制,随距滞止点距离 增加,MHF 向低壁面过热度处移动;平行流区内观察 到混合换热和“热流密度肩冶 现象,随热流密度降至 Leidenfrost 点,“热流密度肩冶消失. (2)随射流速度、水流密度增加(实验域寅实验 芋),滞止区热流密度增加明显;当射流速度、水流密 度继续增加(实验芋寅实验郁),滞止区热流密度变化 不明显,表明钢板表面换热逐渐接近极限. 沸腾曲线 显示,换热过程依次经历过渡沸腾寅核态沸腾寅强制 对流换热. (3) 实验域/ 实验芋/ 实验郁条件下,滞止区沸腾 曲线 MHF 对应的壁面过热度不随射流速度、水流密度 等参数变化;而平行流区内随上述参数的增大,MHF 移至更低壁面过热度处,这与过渡沸腾结束、核态沸腾 开始的壁面换热条件有关. 参 考 文 献 [1] Wang H M, Yu W, Cai Q W. Experimental study of heat transfer coefficient on hot steel plate during water jet impingement cooling. J Mater Process Technol, 2012 , 212(9): 1825 [2] Malinowski Z, Telejko T, Hada覥a B, et al. Dedicated three di鄄 mensional numerical models for the inverse determination of the heat flux and heat transfer coefficient distributions over the metal plate surface cooled by water. Int J Heat Mass Trans, 2014, 75: 347 [3] Li X T, Wang M T, Du F S. A coupled thermal mechanical and microstructural FE model for hot strip continuous rolling process and verification. Mater Sci Eng A, 2005, 408(1鄄2): 33 [4] Karwa N, Gambaryan鄄Roisman T, Stephan P, et al. Experimental investigation of circular free鄄surface jet impingement quenching: transient hydrodynamics and heat transfer. Exp Therm Fluid Sci, 2011, 35(7): 1435 [5] Karwa N, Stephan P. Experimental investigation of free鄄surface jet impingement quenching process. Int J Heat Mass Trans, 2013, 64: 1118 [6] Wang L, Sund佴n B, Borg A, et al. Heat transfer characteristics of an impinging jet in crossflow. J Heat Trans, 2011, 133 ( 12 ): 122202鄄1 [7] Lindeman B A, Anderson J M, Shedd T A. Predictive model for heat transfer performance of oblique and normally impinging jet ar鄄 rays. Int J Heat Mass Trans, 2013, 62: 612 [8] Gradeck M, Kouachi A, Lebouch佴 M, et al. Boiling curves in re鄄 lation to quenching of a high temperature moving surface with liq鄄 uid jet impingement. Int J Heat Mass Trans, 2009, 52 (5鄄6 ): 1094 [9] Robidou H, Auracher H, Gardin P, et al. Controlled cooling of a hot plate with a water jet. Exp Therm Fluid Sci, 2002, 26(2鄄4): 123 [10] Liu Z H, Wang J. Study on film boiling heat transfer for water jet impinging on high temperature flat plate. Int J Heat Mass Trans, 2001, 44(13): 2475 [11] Li J, Zhao D W, Liu X H, et al. Development of low cost Q345 high strength heavy steel plate. Mater Mech Eng, 2009, 33 (10): 68 (李婧, 赵德文, 刘相华, 等. 低成本 Q345 钢高强度厚板的 开发. 机械工程材料, 2009, 33(10): 68) [12] Fu T L, Wang Z D, Li Y, et al. The influential factor studies on the cooling rate of roller quenching for ultra heavy plate. Appl Therm Eng, 2014, 70(1): 800 [13] Leocadio H, Passos J C, da Silva A F C. Heat transfer behavior of a high temperature steel plate cooled by a subcooled impinging circular water jet / / 7th ECI International Conference on Boiling Heat Transfer. Santa Catarina, 2009: 429 [14] Woodfield P L, Mozumder A K, Monde M. On the size of the boiling region in jet impingement quenching. Int J Heat Mass Trans, 2009, 52(1鄄2): 460 [15] Mozumder A K, Monde M, Woodfield P L, et al. Maximum heat flux in relation to quenching of a high temperature surface with liquid jet impingement. Int J Heat Mass Trans, 2006, 49 (17鄄 18): 2877 [16] Monde M, Kitajima K, Inoue T, et al. Critical heat flux in a forced convective subcooled boiling with an impinging jet (Effect of Subcooling ). Trans Jpn Soc Mech Eng Ser B, 1994, 60 (571): 932 (門出政則, 北島健一郎, 井上利明, 帐丈. 衝突噴流沸騰 系瘴臨界熱流束. 日本機械學會論文集( B 諞), 1994, 60 (571): 932) [17] Li D F. Boiling Water Heat Transfer during Quenching of Steel Plates and Tubes [ Dissertation ]. Vancouver: University of British Columbia, 2003 [18] Hernandez鄄Avila V H. Modeling of the Thermal Evolution of Steel Strips Cooled in the Hot Rolling Runout Table [ Dissertation]. Vancouver: University of British Columbia, 2000 [19] Hall D E, Incropera F P, Viskanta R. Jet impingement boiling from a circular free鄄surface jet during quenching: Part 1鄄single phase jet. J Heat Trans, 2001, 123: 901 [20] Yang S M, Tao W Q. Heat Transfer. 4th Ed. Beijing: Higher Education Press, 2006 (杨世铭, 陶文铨. 传热学. 4 版. 北京: 高等教育出版社, 2006) ·1346·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有