正在加载图片...
2330 J. Opt. Soc. Am. A/Vol 23, No 9/September 2006 only the good efficiency of the traps but also that the seat- 10. J. Stratton, Electromagnetic Theory (McGraw-Hill, ring is weak and does not perturb the incident waves 1941) significantly. For this type of dielectric contrast, a born 11. J. A. Kong, Electromagnetic Waue (EMW,2000 approximation can be used to compute the field in the sys- 12. A. R. Zakharian, M. Mansuript "Radiation pressure and the distri tem and confirm these cor inclusions force in dielectric media, "Opt. 321-2336 13. A. Ashkin, Trapping of by resonance radiation 6. CONCLUSIONS sure, Phys. Rev. Lett. 40, 729-732(1978) 14. J. P Gordon. "Radiation forces and momenta in dielectric We have demonstrated in this paper that both trapping media, "Phys. Rev. A 8, 14-21(1973 nd binding forces in a complex arrangement of particles 15. P C Chaumet and M. Nieto-Vesperinas,"Time-averaged an be predicted without approximations on particle size total force on a dipolar sphere in an electromagnetic field, permittivity, or separation. The theoretical model, based Opt.Lett.25,1065-1067(2001) on an extension of Mie theory to cylindrical particles com- 16. R. Arias-Gonzalez and M. Nieto- Vesperinas, " Optical forces on small particles: attractive and repulsive nature bined with the Foldy-Lax multiple-scattering equations d plasmon-resonance conditions, J. Opt. Soc. Am.A nd the Maxwell stress tensor, has been shown to predict 01-1209(2003 some recent experimental results reasonably well with 17. E. M. Purcell and C. R. Pennypacker, "Scattering imited requirements on computer memory. Such model- ing capability represents a step forward in the under- 18. P. C. Chaumet and M. Nieto-Vesperinas, "Coupled dipole standing of optical tweezers, optical matter, and other method determination of the electromagnetic force systems where large particles are manipulated by radia particle over a fat dielectric substrate, " Phys. Rev. B 61 tion pressure 14119-14127(2000) 19. C. Rockstuhl and H. P. Herzig, " Rigorous lied to the analysis of the optical ACKNOWLEDGMENTS J. Opt. A, P 921-931(2004 It is a pleasure to acknowledge many stimulating discus- 20. A. Madrazo and M. Nieto- Vesperinas, Scattering of ns with J -M. Fournier. This work is sponsored by the Department of the U. S. Air Force under Air Force con- tract FA8721-05-C-0002 and by the Chinese Nation 2t onducting plane,"J.Opt. Soc. Am. A 12, 1298-1309 A. Madrazo and M. Nieto-Vesperinas, " Surface structure Foundation under contracts 60371010 and 60531020 Opinions, interpretations, conclusions, and recommenda- lectromagnetic waves from a r in front of a tions are those of the author and are not necessarily en- onducting grating: theory for the reflection photon eling microscope, J. Opt. Soc. Am. A 13, Corresponding author T. M. Grzegorczyk can be 22. F. Depasse and J.-M. Vigoureux, Optical binding force reached by e-mail at tomasz@mit. edu. 23. P C Chaumet and M. Nieto- Vesperinas, "Optical binding of REFERENCES articles with or without the of a fat dielectr urface, Phys. Rev. B 64, 035422(2001) 1. A. Ashkin. "Acceleration and tra of particles by 24. L. Tsang, J. Kong, K. Ding, and C. Ao, Scattering of Electromagnetic Waves: Numerical Simulations 2. A. Ashkin and M. Dziedzic (1971 5. LL Foldy, " The multiple scattering of waves, "Phys. Rev. 3. A. Ashkin and J. M. Dziedzic, "Optical levitation in high 26. M. Lax, "Multiple scattering of waves. Il. The effective field acuum, " Appl. Phys. Lett. 28, 333-335(1976) 4. A. Ashkin, "Applications of laser radiation pressure, 27. M. Lester and M. Nieto-Vesperinas, "Optical forces on Science210,1081-1088(1980) 5. M. M. Burns. J.M. Fournier. and A. Go microparticles in an evanescent laser field, Opt Lett. 24 "Optical binding, "Phys. Rev. Lett. 63, 1233-123 urns. J 28. B A. Kemp, T. M. Grzegorczyk, and J. A. Kong, "Ab initio nd binding in intense study of the radiation media, "Opt tical fields. "Science 249, 749-754(1990) 92809291(2005 7. J-M. Fournier. G 29. B. A. Kemp, T M. Grzegorczyk, and J. A. Kong, Lorentz R. Proe.SPI5514,309-317 Waves Appl.20,827-839(2006) (2004) 30. P. Zemanek, V. Karasek, and A. Sasso, "Optical forces 8. A Casaburi, G. Pesce, P Zemanek, and A Sasso, Two- and 240,401-415(2004) Commun.251,393-404(2005 T. M. Grzegorczyk, B. A. Kemp, and J. A. Kong, "Stable 31. and, Rousaiat e. Assem b inga quet, sco ichanat ices ia optical trapping based on optical binding forces, "Phys. Rev various optical schemes, in Proc. SPIE 5930, 238-247 Let.6,113903(2006) 2005only the good efficiency of the traps but also that the scat￾tering is weak and does not perturb the incident waves significantly. For this type of dielectric contrast, a Born approximation can be used to compute the field in the sys￾tem and confirm these conclusions. 6. CONCLUSIONS We have demonstrated in this paper that both trapping and binding forces in a complex arrangement of particles can be predicted without approximations on particle size, permittivity, or separation. The theoretical model, based on an extension of Mie theory to cylindrical particles com￾bined with the Foldy–Lax multiple-scattering equations and the Maxwell stress tensor, has been shown to predict some recent experimental results reasonably well with limited requirements on computer memory. Such model￾ing capability represents a step forward in the under￾standing of optical tweezers, optical matter, and other systems where large particles are manipulated by radia￾tion pressure. ACKNOWLEDGMENTS It is a pleasure to acknowledge many stimulating discus￾sions with J.-M. Fournier. This work is sponsored by the Department of the U.S. Air Force under Air Force con￾tract FA8721-05-C-0002 and by the Chinese National Foundation under contracts 60371010 and 60531020. Opinions, interpretations, conclusions, and recommenda￾tions are those of the author and are not necessarily en￾dorsed by the U. S. Government. Corresponding author T. M. Grzegorczyk can be reached by e-mail at tomasz@mit.edu. REFERENCES 1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). 2. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971). 3. A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976). 4. A. Ashkin, “Applications of laser radiation pressure,” Science 210, 1081–1088 (1980). 5. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989). 6. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990). 7. J.-M. Fournier, G. Boer, G. Delacrétaz, P. Jacquot, J. Rohner, and R. Salathé, “Building optical matter with binding and trapping forces,” in Proc. SPIE 5514, 309–317 (2004). 8. A. Casaburi, G. Pesce, P. Zemánek, and A. Sasso, “Two- and three-beam interferometric optical tweezers,” Opt. Commun. 251, 393–404 (2005). 9. T. M. Grzegorczyk, B. A. Kemp, and J. A. Kong, “Stable optical trapping based on optical binding forces,” Phys. Rev. Lett. 96, 113903 (2006). 10. J. Stratton, Electromagnetic Theory (McGraw-Hill, 1941). 11. J. A. Kong, Electromagnetic Wave Theory (EMW, 2000). 12. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, “Radiation pressure and the distribution of electromagnetic force in dielectric media,” Opt. Express 13, 2321–2336 (2005). 13. A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40, 729–732 (1978). 14. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973). 15. P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2001). 16. J. R. Arias-González and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A 20, 1201–1209 (2003). 17. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973). 18. P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000). 19. C. Rockstuhl and H. P. Herzig, “Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders,” J. Opt. A, Pure Appl. Opt. 6, 921–931 (2004). 20. A. Madrazo and M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995). 21. A. Madrazo and M. Nieto-Vesperinas, “Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: theory for the reflection photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 785–795 (1996). 22. F. Depasse and J.-M. Vigoureux, “Optical binding force between two Rayleigh particles,” J. Phys. D 27, 914–919 (1994). 23. P. C. Chaumet and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64, 035422 (2001). 24. L. Tsang, J. Kong, K. Ding, and C. Ao, Scattering of Electromagnetic Waves: Numerical Simulations (Wiley, 2000). 25. L. L. Foldy, “The multiple scattering of waves,” Phys. Rev. 67, 107–119 (1945). 26. M. Lax, “Multiple scattering of waves. II. The effective field in dense systems,” Phys. Rev. 85, 261–269 (1952). 27. M. Lester and M. Nieto-Vesperinas, “Optical forces on microparticles in an evanescent laser field,” Opt. Lett. 24, 936–938 (1999). 28. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Ab initio study of the radiation pressure on dielectric and magnetic media,” Opt. Express 13, 9280–9291 (2005). 29. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, “Lorentz force on dielectric and magnetic particles,” J. Electromagn. Waves Appl. 20, 827–839 (2006). 30. P. Zemánek, V. Karásek, and A. Sasso, “Optical forces acting on Rayleigh particle placed into interference field,” Opt. Commun. 240, 401–415 (2004). 31. J.-M. Fournier, J. Rohner, P. Jacquot, R. Johann, S. Mias, and R. Salathé, “Assembling mesoscopic particles by various optical schemes,” in Proc. SPIE 5930, 238–247 (2005). 2330 J. Opt. Soc. Am. A/Vol. 23, No. 9/September 2006 Grzegorczyk et al
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有