正在加载图片...
M. Schmiicker et al /Composites: Part A 34(2003)613-622 4. Conclusion Refe 1. An optical microscopy method is presented to determine [1] Chawla KK. Composite materials, science and engineering. New matrix agglomerations in WHIPOX all oxide CMCs York: Springer-Verlag: 1987. p. 134-49 This technique utilizes the light conductivity and opacity [2] Chawla KK. Ceramic matrix composites. London: Chapman Hall; 993.p.162-95 of fibers and matrix, respectively. Three-dimensional [3] Levi CG, Yang JY, Dalgleish BJ, Zok FW. Evans AG Processing and plots of the matrix agglomerations were obtained by performance of an all-oxide ceramic composite. J Am Ceram Soc omographic methods using 25 individual slices for 99881:2077-86. each sample. Data analyzes reveal that matrix agglom- [4] Schneider H, Schmuicker M, Goring J, Kanka B, She J, Mechnich P Porous alumino silicate fiber/mullite erations are not distributed randomly but are concen- and properties. Ceram Trans, vol. 115. Westerville, OH: Am Ceram. trated between fiber laminates Soc;2000.p.415 2. A close correlation exists between the degree of [51 Kanka B, Goring J, Schmuicker M, Schneider H. Processing, interlaminate matrix agglomeration and interlaminate microstructure and properties of Nextel 610, 650 and 720 fiber shear strength. The most pronounced interlaminate porous mullite matrix composites. Cetammic Engin Sci. Proc., 22. matrix agglomeration acts as weakest-link. The total Westerville OH: Am Ceram Soc; 2001. P. 703. [6] Goring J, Flucht F, Schneider H Mechanical behaviour of WHIPOX amount of matrix agglomeration is of minor influence. ceramic matrix composites. In: Krenkel w, Naslain R, Schneider H, 3. Compression of a WHiPOX plate in the moist stage leads editors. High temperature ceramic matrix composites, Hrsg. Wein- to more homogeneous distribution of interlaminate matrix agglomerations although the total amount of [7] Kanka B, Schmucker M, Luxem W, Schneider H. Processing and microstructure of Whipox. In: Krenkel W, Naslain R, Schneider H fiber free regions is not much affected editors. High temperature ceramic matrix composites, Hrsg. Wein- heim: Wiley VCH: 2001. p 610. Acknowledgement second phase populations. Metallography 1985: 18: 235 [9] Pyrz R Quantitative description of the microstructure of composites. The authors thank mr. b. Kanka and Mr. w. luxem [10] Liu HN, Ogi K, Miyahara H The fibre distribution of Al,O/Al-Cu for fabrication of WHIPOX materials and for helpf alloy composites. J Mater Sci 1998: 33: 3615-22 discussions. Mr. f. flucht carried out the mechanical [11 Schmucker M, Kanka B, Schneider H. Mesostructure of whipox all composites. In: Krenkel w, Naslain R, Schneider H, editors testing and Mr. K. Baumann assisted in ceramographic temperature ceramic matrix composites. Weinheim: Wile sample preparation which is highly appreciated vCH;2001.p.6704. Conclusion 1. An optical microscopy method is presented to determine matrix agglomerations in WHIPOX all oxide CMCs. This technique utilizes the light conductivity and opacity of fibers and matrix, respectively. Three-dimensional plots of the matrix agglomerations were obtained by tomographic methods using <25 individual slices for each sample. Data analyzes reveal that matrix agglom￾erations are not distributed randomly but are concen￾trated between fiber laminates. 2. A close correlation exists between the degree of interlaminate matrix agglomeration and interlaminate shear strength. The most pronounced interlaminate matrix agglomeration acts as ‘weakest-link’. The total amount of matrix agglomeration is of minor influence. 3. Compression of a WHIPOX plate in the moist stage leads to more homogeneous distribution of interlaminate matrix agglomerations although the total amount of fiber free regions is not much affected. Acknowledgements The authors thank Mr. B. Kanka and Mr. W. Luxem for fabrication of WHIPOX materials and for helpful discussions. Mr. F. Flucht carried out the mechanical testing and Mr. K. Baumann assisted in ceramographic sample preparation which is highly appreciated. References [1] Chawla KK. Composite materials, science and engineering. New York: Springer-Verlag; 1987. p. 134–49. [2] Chawla KK. Ceramic matrix composites. London: Chapman & Hall; 1993. p. 162–95. [3] Levi CG, Yang JY, Dalgleish BJ, Zok FW, Evans AG. Processing and performance of an all-oxide ceramic composite. J Am Ceram Soc 1998;81:2077–86. [4] Schneider H, Schmu¨cker M, Go¨ring J, Kanka B, She J, Mechnich P. Porous alumino silicate fiber/mullite matrix composites: Fabrication and properties. Ceram Trans, vol. 115. Westerville, OH: Am. Ceram. Soc; 2000. p. 415. [5] Kanka B, Go¨ring J, Schmu¨cker M, Schneider H. Processing, microstructure and properties of Nextele 610, 650 and 720 fiber/ porous mullite matrix composites. Cetammic Engin. Sci. Proc., 22. Westerville OH: Am. Ceram. Soc; 2001. p. 703. [6] Go¨ring J, Flucht F, Schneider H. Mechanical behaviour of WHIPOX ceramic matrix composites. In: Krenkel W, Naslain R, Schneider H, editors. High temperature ceramic matrix composites, Hrsg. Wein￾heim: Wiley VCH; 2001. p. 675. [7] Kanka B, Schmu¨cker M, Luxem W, Schneider H. Processing and microstructure of Whipox. In: Krenkel W, Naslain R, Schneider H, editors. High temperature ceramic matrix composites, Hrsg. Wein￾heim: Wiley VCH; 2001. p. 610. [8] Spitzig WA, Kelly JF, Richmond O. Quantitative characterization of second phase populations. Metallography 1985;18:235–41. [9] Pyrz R. Quantitative description of the microstructure of composites. Comp Sci Technol 1994;50:197–208. [10] Liu HN, Ogi K, Miyahara H. The fibre distribution of Al2O3/Al–Cu alloy composites. J Mater Sci 1998;33:3615–22. [11] Schmu¨cker M, Kanka B, Schneider H. Mesostructure of Whipox all oxide composites. In: Krenkel W, Naslain R, Schneider H, editors. High temperature ceramic matrix composites. Weinheim: Wiley VCH; 2001. p. 670. 622 M. Schmu¨cker et al. / Composites: Part A 34 (2003) 613–622
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有