单摆运动中;m,g的一般表达式」f(,m,l,g)=0 曰r"m"lg"=zyy4为待定常数,π为无量纲量 [t]=LMT (LMT)(LMT)(LMT) [m]=LMT° (LMT)=LM"T° [=LM T [g]=Lmt ⅨMT-2y=EMT0 「y+y;=0 y=(,,,J,)+g= F()=0 y2=0 =(20,-,1 y1-2y4 0 (t=Nl/g) P理( Buckingham)设q,9…,qm)=0 是与量纲单位无关的物理定律,x1X2…X2是 基本量纲,nm,q1q2,…,qm的量纲可表为 q]=∏X,j=12…m 若量纲矩阵A={15,PmkA=r 线性齐次方程组Ay=0有mr个基本解,记作 ys=(y,ys2,…,ysm)2, m-r 则丌。= 为m-r个相互独立的无量纲量,且 F(1,π2…,mr)=0与f(q1,q2,…,qn)=0等价,F未定 \ \ \ \ 7 7 \ \ \ \ " ### Q L D M L LM $ $$%$ $%& ' % & ## # ' () *+!),- ..., ,### LM Q P u & P M \ V M VM &