·1174. 工程科学学报,第41卷,第9期 依据上述分析讨论,绘制了原位合成SiC颗粒 (图7).为了便于说明问题,放大了图中黑色反应 增强MoSi,基复合材料900℃的氧化机理示意图 界面部分. 0,扩散 反应界面 002 叫 0H0富i00o Si S Si MoSi,.SiC Ist ssst 基体 基体 -石英 Si&0,扩散 S10 0000产0 Mo Si 一Mo,Si 1000h Si SiSiSiSi 基体 基体 图7原位合成SiC颗粒增强MSi,基复合材料900℃氧化机理示意图 Fig.7 Schematic drawing of the oxidation mechanism of in situ synthesized SiC particulate reinforced MoSi,matrix composites at 900 C [6]Kuchino J,Kurokawa K,Shibayama T,et al.Effect of micro- 4结论 structure on oxidation resistance of MoSi,fabricated by spark plas. (1)900℃氧化1000h,材料都表现出优异的氧 ma sintering.Vacuum,2004,73(3-4):623 [7]Arreguin-Zavala J,Turenne S,Martel A,et al.Microwave sinte- 化抗力,原位合成的复合材料的氧化抗力好于外加 ring of MoSi2-MosSig to promote a final nanometer-scale micro- 复合材料,MoSiC30抗氧化性能最好.材料氧化 structure and suppressing of pesting phenomenon.Mater Charact, 1000h后均未发生pest现象. 2012,68:117 (2)复合材料氧化产物的相组成为Si02(α-石 [8] Dasgupta T,Umarji A M.Improved ductility and oxidation resist- 英)和Mo,Si·氧化膜最表面一薄层为连续致密的 ance in Nb and Al co-suhstituted MoSi.Intermetallics,2008,16 SiO2相,下层为富Mo相(Mo,Si).材料的氧化过程 (6):739 [9]Potanin A Y,Pogozhev Y S,Levashov E A,et al.Kinetics and 是0,与MoSi2和SiC同时发生作用. oxidation mechanism of MoSi2-MoB ceramics in the 600-1200C (3)材料在900℃氧化发生硅的选择性氧化,正 temperature range.Ceram Int,2017,43(13):10478 是这种硅的选择性氧化在MoSi2的表面自发形成一 [10]Zhou H M,Liu G Q,Xiao L R,et al.Low temperature oxidation 层致密的Si0,保护膜,使材料在900℃表现出优异 behavior of MoSi2 composites strengthened and toughened by 的长期抗氧化性 Sia N particles and SiC whiskers.J Inorg Mater,2009,24(5): 929 (周宏明,柳公器,肖来荣,等.Si4N,颗粒及SiC品须强韧 参考文献 化MSi复合材料的低温氧化行为.无机材料学报,2009, 24(5):929) [1]Fitzer E,Benesovsky F.Molybdenum disilicide as high-tempera- [11]Feng PZ,Wang X H.He Y Q,et al.Effect of high-temperature ture material /Proceedings of 2nd Plansee Seminar.Vienna, preoxidation treatment on the low-temperature oxidation behavior 1955:79 of a MoSiz-based composite at 500C.JAlloys Compd,2009. [2]Chou T C,Nieh T G.New observations of MoSiz pest at 500C. 473(1-2):185 Scripta Metall Mater,1992,26(10):1637 [12]Taleghani P R,Bakhshi S R,Erfanmanesh M,et al.Improve- [3]McKamey C G,Tortorelli P F.DeVan J H,et al.A study of pest ment of MoSi,oxidation resistance ria boron addition:fabrication oxidation in polyerystalline MoSi2.J Mater Res,1992,7(10): of MoB/MoSiz composite by mechanical alloying and subsequent 2747 reactive sintering.Powder Technol,2014,254:241 [4] Westbrook J H,Wood D L."PEST"degradation in beryllides, [13]Wen S H,Zhou C G,Sha J B.Improvement of oxidation resist- silicides,aluminides and related compounds.Nucl Mater, ance of a Mo-62Si-5B (at.%)alloy at 1250C and 1350C ria 1964,12(2):208 an in situ pre-formed SiO fabricated by spark plasma sintering. [5]Chen JX,Li C H.Fu Z,et al.Low temperature oxidation behav- Corros Sci,2017,127:175 ior of a MoSi,-based material.Mater Sci Eng A,1999,261(1- [14]Sun Z Q,Zhang L Q,Yang W Y,et al.A Method of the Prepa- 2):239 ration of In Situ Silicon Carbide Particulates Reinforeed Molybde工程科学学报,第 41 卷,第 9 期 依据上述分析讨论,绘制了原位合成 SiC 颗粒 增强 MoSi 2 基复合材料 900 益 的氧化机理示意图 (图 7). 为了便于说明问题,放大了图中黑色反应 界面部分. 图 7 原位合成 SiC 颗粒增强 MoSi2 基复合材料 900 益氧化机理示意图 Fig. 7 Schematic drawing of the oxidation mechanism of in situ synthesized SiC particulate reinforced MoSi2 matrix composites at 900 益 4 结论 (1)900益氧化 1000 h,材料都表现出优异的氧 化抗力,原位合成的复合材料的氧化抗力好于外加 复合材料, MoSiC30 抗氧化性能最好. 材料氧化 1000 h 后均未发生 pest 现象. (2)复合材料氧化产物的相组成为 SiO2 (琢鄄石 英)和 Mo5 Si 3 . 氧化膜最表面一薄层为连续致密的 SiO2 相,下层为富 Mo 相(Mo5 Si 3 ). 材料的氧化过程 是 O2 与 MoSi 2 和 SiC 同时发生作用. (3)材料在 900 益氧化发生硅的选择性氧化,正 是这种硅的选择性氧化在 MoSi 2 的表面自发形成一 层致密的 SiO2 保护膜,使材料在 900 益 表现出优异 的长期抗氧化性. 参 考 文 献 [1] Fitzer E, Benesovsky F. Molybdenum disilicide as high鄄tempera鄄 ture material / / Proceedings of 2nd Plansee Seminar. Vienna, 1955: 79 [2] Chou T C, Nieh T G. New observations of MoSi2 pest at 500 益 . Scripta Metall Mater, 1992, 26(10): 1637 [3] McKamey C G, Tortorelli P F, DeVan J H, et al. A study of pest oxidation in polycrystalline MoSi2 . J Mater Res, 1992, 7 (10 ): 2747 [4] Westbrook J H, Wood D L. “ PEST冶 degradation in beryllides, silicides, aluminides and related compounds. J Nucl Mater, 1964, 12(2): 208 [5] Chen J X, Li C H, Fu Z, et al. Low temperature oxidation behav鄄 ior of a MoSi2 鄄鄄 based material. Mater Sci Eng A, 1999, 261(1鄄 2): 239 [6] Kuchino J, Kurokawa K, Shibayama T, et al. Effect of micro鄄 structure on oxidation resistance of MoSi2 fabricated by spark plas鄄 ma sintering. Vacuum, 2004, 73(3鄄4): 623 [7] Arregu侏n鄄Zavala J, Turenne S, Martel A, et al. Microwave sinte鄄 ring of MoSi2 鄄鄄 Mo5 Si3 to promote a final nanometer鄄scale micro鄄 structure and suppressing of pesting phenomenon. Mater Charact, 2012, 68: 117 [8] Dasgupta T, Umarji A M. Improved ductility and oxidation resist鄄 ance in Nb and Al co鄄substituted MoSi2 . Intermetallics, 2008, 16 (6): 739 [9] Potanin A Y, Pogozhev Y S, Levashov E A, et al. Kinetics and oxidation mechanism of MoSi2 鄄鄄MoB ceramics in the 600鄄鄄1200 益 temperature range. Ceram Int, 2017, 43(13): 10478 [10] Zhou H M, Liu G Q, Xiao L R, et al. Low temperature oxidation behavior of MoSi2 composites strengthened and toughened by Si3N4 particles and SiC whiskers. J Inorg Mater, 2009, 24(5): 929 (周宏明, 柳公器, 肖来荣, 等. Si3N4 颗粒及 SiC 晶须强韧 化 MoSi2 复合材料的低温氧化行为. 无机材料学报, 2009, 24(5): 929) [11] Feng P Z, Wang X H, He Y Q, et al. Effect of high鄄temperature preoxidation treatment on the low鄄temperature oxidation behavior of a MoSi2 鄄鄄 based composite at 500 益 . J Alloys Compd, 2009, 473(1鄄2): 185 [12] Taleghani P R, Bakhshi S R, Erfanmanesh M, et al. Improve鄄 ment of MoSi2 oxidation resistance via boron addition: fabrication of MoB/ MoSi2 composite by mechanical alloying and subsequent reactive sintering. Powder Technol, 2014, 254: 241 [13] Wen S H, Zhou C G, Sha J B. Improvement of oxidation resist鄄 ance of a Mo鄄鄄62Si鄄鄄5B (at. % ) alloy at 1250 益 and 1350 益 via an in situ pre鄄formed SiO2 fabricated by spark plasma sintering. Corros Sci, 2017, 127: 175 [14] Sun Z Q, Zhang L Q, Yang W Y, et al. A Method of the Prepa鄄 ration of In Situ Silicon Carbide Particulates Reinforced Molybde鄄 ·1174·