宋仁伯等:Fe-Mn-Al-C系中锰钢的研究现状与发展前景 825· 用.此外,淬火+回火工艺所能达到的塑性有限,临 grain boundaries and microstructural morphology on the impact 界退火工艺屈强比高,影响了材料的二次加工性, toughness of intercritically annealed medium Mn steel.Acta 以及“一钢多级”等方面都有待进一步的研究 Mater,2017,122:199 [14]Kuzmina M,Herbig M,Ponge D,et al.Linear complexions: 参考文献 confined chemical and structural states at dislocations.Science, 2015,349(6252:1080 [1]Tang D,Mi Z L,Chen Y L.Technology and research and development of advanced automobile steel abroad.Iron Sreel, [15]Frommeyer G.Drewes E J,Engl B.Physical and mechanical properties of iron-aluminium-(Mn,Si)lightweight steels.Rev Mer 2005,40(6):1 Paris,.2000,97(10):1245 (唐荻,米振莉,陈雨来.国外新型汽车用钢的技术要求及研究 [16]Chu C M,Huang H,Kao P W,et al.Effect of alloying chemistry 开发现状.钢铁,2005,40(6):1) on the lattice constant of austenitic Fe-MnAl-C alloys.Scripta [2] Kang Y L.Lightweight vehicle,advanced high strength steel and Metall Mater,.1994,30(4):505 energy-saving and emission reduction./ron Steel,2008,43(6):1 [17]Lehnhoff G R,Findley K O,De Cooman B C.The influence of (康永林.汽车轻量化先进高强钢与节能减排.钢铁,2008, silicon and aluminum alloying on the lattice parameter and 43(6):1) [3]Luo Z X.Rong J,Yang K,et al.Development of high strength stacking fault energy of austenitic steel.Scripta Mater,2014,92: 19 automotive steel and research on 3rd generation automotive high strength steel.Automobile Technol Mater,2015(4):1 [18]Frommeyer G,Brux U,Neumann P.Supra-ductile and high- (罗振轩,荣建,杨可,等,高强度汽车用钢发展与第3代汽车高 strength manganese-TRIP/TWIP steels for high energy absorption 强度钢的研究.汽车工艺与材料,2015(4):1) purposes.ISL/Int,2013,43(3):438 [4]Lee Y K.Han J.Current opinion in medium manganese steel. [19]Zhang F C,Fu R D,Qiu L,et al.Microstructure and property of Mater Sci Technol,2015,31(7):843 nitrogen-alloyed high manganese austenitic steel under high strain [5]LiJ,Song R B,LiX,et al.Microstructural evolution and tensile rate tension.Mater Sci Eng A,2008,492(1-2):255 properties of 70 GPa%grade strong and ductile hot-rolled 6Mn [20]Cai Z H,Cai B,Ding H,et al.Microstructure and deformation steel treated by intercritical annealing.Mater Sci Eng A,2019,745: behavior of the hot-rolled medium manganese steels with varying 212 aluminum-content.Mater Sci Eng A,2016,676:263 [6]Jo M C,Lee H,Zargaran A,et al.Exceptional combination of [21]Park S J,Hwang B.Lee K H,et al.Microstructure and tensile ultra-high strength and excellent ductility by inevitably generated behavior of duplex low-density steel containing 5mass% Mn-segregation in austenitic steel.Mater Sci Eng A,2018,737:69 aluminum.Scripta Mater,2013,68(6):365 [7]Yang F Q,Song R B,Li Y P,et al.Tensile deformation of low [22]Cai M H,Zhu W J,Stanford N,et al.Dependence of deformation density duplex Fe-Mn-Al-C steel.Mater Des,2015,76:32 behavior on grain size and strain rate in an ultrahigh strength- [8]Zhang L F,Song R B.Zhao C.et al.Work hardening behavior ductile Mn-based TRIP alloy.Mater Sci Eng 4,2016,653:35 involving the substructural evolution of an austenite-ferrite [23]Cai Z H,Ding H,Xue X,et al.Significance of control of austenite Fe-Mn-Al-C steel.Mater Sci Eng A,2015,640:225 stability and three-stage work-hardening behavior of an ultrahigh [9]Zhao C,Song R B,Zhang L F,et al.Effect of annealing strength-high ductility combination transformation-induced temperature on the microstructure and tensile properties of plasticity steel.Scripta Mater,2013,68(11):865 Fe-10Mn-10Al-0.7C low-density steel.Mater Des,2016,91:348 [24]Cai Z H,Ding H,Xue X,et al.Microstructural evolution and [10]Li Z C,Ding H,Misra R D K,et al.Microstructure-mechanical mechanical properties of hot-rolled 11%manganese TRIP steel. property relationship and austenite stability in medium-Mn TRIP Mater Sci Eng A,2013,560:388 steels:The effect of austenite-reverted transformation and [25]Lee C Y,Jeong J,Han J,et al.Coupled strengthening in a medium quenching-tempering treatments.Mater Sci Eng 4,2017,682:211 manganese lightweight steel with an inhomogeneously grained [11]Xu J P.Fu H,Wang Z,et al.Research progress and prospect of structure of austenite.Acta Mater,2015,84:1 medium manganese steel.Chin J Eng,2019,41(5):557 [26]Cai Z H,Ding H,Kamoutsi H,et al.Interplay between (徐娟萍,付豪,王正,等.中锰钢的研究进展与前景.工程科学 deformation behavior and mechanical properties of intercritically 学报,2019,41(5):557) annealed and tempered medium-manganese transformation- [12]Da Silva A K,Leyson G,Kuzmina M,et al.Confined chemical induced plasticity steel.Mater Sci Eng A,2016,654:359 and structural states at dislocations in Fe-9wt%Mn steels:a [27]Lee S,De Connman B C.Tensile behavior of intercritically correlative TEM-atom probe study combined with multiscale annealed ultra-fine grained 8%Mn multi-phase steel.Steel Res Int, modelling.Acta Mater,2017,124:305 2015,86(10):1170 [13]Han J,Da Silva A K,Ponge D,et al.The effects of prior austenite [28]Li Z C,Ding H,Cai Z H.Mechanical properties and austenite用. 此外,淬火+回火工艺所能达到的塑性有限,临 界退火工艺屈强比高,影响了材料的二次加工性, 以及“一钢多级”等方面都有待进一步的研究. 参 考 文 献 Tang D, Mi Z L, Chen Y L. Technology and research and development of advanced automobile steel abroad. Iron Steel, 2005, 40(6): 1 (唐荻, 米振莉, 陈雨来. 国外新型汽车用钢的技术要求及研究 开发现状. 钢铁, 2005, 40(6):1) [1] Kang Y L. Lightweight vehicle, advanced high strength steel and energy-saving and emission reduction. Iron Steel, 2008, 43(6): 1 (康永林. 汽车轻量化先进高强钢与节能减排. 钢铁, 2008, 43(6):1) [2] Luo Z X, Rong J, Yang K, et al. Development of high strength automotive steel and research on 3rd generation automotive high strength steel. Automobile Technol Mater, 2015(4): 1 (罗振轩, 荣建, 杨可, 等. 高强度汽车用钢发展与第3代汽车高 强度钢的研究. 汽车工艺与材料, 2015(4):1) [3] Lee Y K, Han J. Current opinion in medium manganese steel. Mater Sci Technol, 2015, 31(7): 843 [4] Li J J, Song R B, Li X, et al. Microstructural evolution and tensile properties of 70 GPa·% grade strong and ductile hot-rolled 6Mn steel treated by intercritical annealing. Mater Sci Eng A, 2019, 745: 212 [5] Jo M C, Lee H, Zargaran A, et al. Exceptional combination of ultra-high strength and excellent ductility by inevitably generated Mn-segregation in austenitic steel. Mater Sci Eng A, 2018, 737: 69 [6] Yang F Q, Song R B, Li Y P, et al. Tensile deformation of low density duplex Fe–Mn–Al–C steel. Mater Des, 2015, 76: 32 [7] Zhang L F, Song R B, Zhao C, et al. Work hardening behavior involving the substructural evolution of an austenite-ferrite Fe–Mn–Al–C steel. Mater Sci Eng A, 2015, 640: 225 [8] Zhao C, Song R B, Zhang L F, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe–10Mn–10Al–0.7C low-density steel. Mater Des, 2016, 91: 348 [9] Li Z C, Ding H, Misra R D K, et al. Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments. Mater Sci Eng A, 2017, 682: 211 [10] Xu J P, Fu H, Wang Z, et al. Research progress and prospect of medium manganese steel. Chin J Eng, 2019, 41(5): 557 (徐娟萍, 付豪, 王正, 等. 中锰钢的研究进展与前景. 工程科学 学报, 2019, 41(5):557) [11] Da Silva A K, Leyson G, Kuzmina M, et al. Confined chemical and structural states at dislocations in Fe-9wt% Mn steels: a correlative TEM-atom probe study combined with multiscale modelling. Acta Mater, 2017, 124: 305 [12] [13] Han J, Da Silva A K, Ponge D, et al. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Mater, 2017, 122: 199 Kuzmina M, Herbig M, Ponge D, et al. Linear complexions: confined chemical and structural states at dislocations. Science, 2015, 349(6252): 1080 [14] Frommeyer G, Drewes E J, Engl B. Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Rev Met Paris, 2000, 97(10): 1245 [15] Chu C M, Huang H, Kao P W, et al. Effect of alloying chemistry on the lattice constant of austenitic Fe –MnAl –C alloys. Scripta Metall Mater, 1994, 30(4): 505 [16] Lehnhoff G R, Findley K O, De Cooman B C. The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel. Scripta Mater, 2014, 92: 19 [17] Frommeyer G, Brux U, Neumann P. Supra-ductile and highstrength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int, 2013, 43(3): 438 [18] Zhang F C, Fu R D, Qiu L, et al. Microstructure and property of nitrogen-alloyed high manganese austenitic steel under high strain rate tension. Mater Sci Eng A, 2008, 492(1-2): 255 [19] Cai Z H, Cai B, Ding H, et al. Microstructure and deformation behavior of the hot-rolled medium manganese steels with varying aluminum-content. Mater Sci Eng A, 2016, 676: 263 [20] Park S J, Hwang B, Lee K H, et al. Microstructure and tensile behavior of duplex low-density steel containing 5mass% aluminum. Scripta Mater, 2013, 68(6): 365 [21] Cai M H, Zhu W J, Stanford N, et al. Dependence of deformation behavior on grain size and strain rate in an ultrahigh strengthductile Mn-based TRIP alloy. Mater Sci Eng A, 2016, 653: 35 [22] Cai Z H, Ding H, Xue X, et al. Significance of control of austenite stability and three-stage work-hardening behavior of an ultrahigh strength-high ductility combination transformation-induced plasticity steel. Scripta Mater, 2013, 68(11): 865 [23] Cai Z H, Ding H, Xue X, et al. Microstructural evolution and mechanical properties of hot-rolled 11% manganese TRIP steel. Mater Sci Eng A, 2013, 560: 388 [24] Lee C Y, Jeong J, Han J, et al. Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite. Acta Mater, 2015, 84: 1 [25] Cai Z H, Ding H, Kamoutsi H, et al. Interplay between deformation behavior and mechanical properties of intercritically annealed and tempered medium-manganese transformationinduced plasticity steel. Mater Sci Eng A, 2016, 654: 359 [26] Lee S, De Connman B C. Tensile behavior of intercritically annealed ultra-fine grained 8% Mn multi-phase steel. Steel Res Int, 2015, 86(10): 1170 [27] [28] Li Z C, Ding H, Cai Z H. Mechanical properties and austenite 宋仁伯等: Fe−Mn−Al−C 系中锰钢的研究现状与发展前景 · 825 ·