insight review articles Figure 5 Calculated patten of light emerging from a single slit surrounded by a finite array of grooves(courtesy of F. J. Garcia- Vidal Universidad Autonoma de Madrid, Spain)and L. Martin-Moreno (Universidad de Zaragoza, Spain) For this simulation there were 10 grooves on ch side of the slit. each of width 40 nm and depth 100 nm. The groove period was 500 nm. The contour plot shows the spatial dependence of the component of the Poynting vector along the radial direction for a wavelength of 560 corresponding to a spectral transmission maximum. Blue indicates low intensity (3x 10) and red high (1) newelements for SP-based photonics". Thisisanareainurgentneedof 20. Kitson.S C. Barmes, WL&Sambles. 1. R A full photonic band gap for surface modes in the visible. SPs show great potential as a new class of subwavelength photonic 21. Barnex/ ert. 77.26701-2673(1996) furtherwork. L Preist, T W. Kitson, S.C. &Sambles, IR. Physical origin of( devices; their particular attractions are their near-field characteran 22. Barnes, W.L Kitson. S C, Preist, T W. researchers to explore the underlying science and has already led to 23. kreibig, U. Vollmer. L Optical properties of sters(Springer, Berlin, 1995) beam splitters, enhanced transmission and beaming. Some of these ofsize-d厘上单mhmm abrfcatfon tool for studies components may find their way into the world of photonics as dis- 26 Sonnichsen, C. f al Spectroscopy of single metallic nanopartides using total intermal relection rete elements. The greater dream of making a completely plasmonic 27. Schutz,, A. Plasmon resonant particles for bologna detection. Cur. Opin. Biocechno. 14. 13-22 circuit will require much further research. It is an exciting challenge (20 thatisstimulating activity around the world. 2&Oldenburg, SI,Genick, C C Clark, K.A. Schultz, D A. Base pair mismatch recognition using onant partide labels. Anal Biochem. 309, 109-116(2002)- doi: 10. 103w/nature 01937 by fast electrons in thin films. Phys. Rew. 106,871-881(1957) 2. Burstein, E in Polaritons(eds Burstein, E& De Martini, E) 1-4 (Pergamon, New York, 1974) 3.Hecht B, Bieleleldt, H, Novotny, L Inouye, Y. PohL D. W. Local excitation, scattering and Crvean-g Eur J8,3808-3814(2002). interference of surface plasmons. Phys Rev. Lett 77 1885-1892(1996). 31. Vargas-Baca, I. ef al. Line dispersed in liquid and poly merie matrixes. Can J. Chen. 80, 1625-1633(2002) 32 Rechberger, W etal. Optical properties of two interacting gold nanoparticles. Opt. Commun. 220. RevL.78.167-1670(1997). 6. Nie, s M Emery, S.R. Probing single molecules and single nanopartides by surface-enhanced 33 Kottmann, I.P.& Martin, O IE Retardation-induced plasmon resonances in coupled nanoparticles man seattering Science 275, 1102-1106(1997) omoa, J, Yee, S.S.& Gauglitz, G Surface plasmon resonance sensors: review. Sensors Actuar. B5L, 34 Garcia-VidaL, EJ& Pendry. I.B. Collective theory for surface enhanced Raman scattering. Phys. Rev. Kneipp, K, Kneipp. H, Itzkan, L, Dasari, RR. Feld, M.S. Surface enhanced Raman scattering and 35. Gresillon, S Letr ation of localized optical excitations in random metal- biophysics. 1. Plys C1L, R597-R624(2002) 9. Sambles,IR Bradbery G w.& Yang, E Z. Opuical-excitation of surface-plasmons-an introduction wC业0Nmd业w驶 ieldootical micros P 10. Kretschmann,E&Raether, H Radiative decay of nonradiative surface plasmons excited by light. Z 37 Devaux, E et aL Local defection of the optical magnetic field in the near zone of dielectric samples. rface plasma waves in silver by the methodol frustra 3&Sila. Tl& Schultz, S. A scanning near-field op croscope for the imaging of magnetic Ditlbache, H. er al Fluorescence imaging of surface plasmon fields. AppL Phys. Lett. 80, 404-405 tilaser films. Phys. Rev. B6l 235422(2001) 13. Ritchie, R H, Arakawa, E T, Cowan, J.I.& Ham, R N. Surface-plasamon resonance effect in 10. Kottmann, I P, Martin, OI E Smith, D R. Schultz S Plasmon resonances of silver nanowires grating diffraction. Phys Rev. Lett. 21, 1530-1533(1968) alar cross section. Phys. Rev. B6L 5402(2001). 14. Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction gratingspectrum al Weeber, IC Dereux, A, Girard, C. Krenn, I R&GoudonneL, IP Plasmon polaritons of metalli 15. Raether H Surface Plasmons(ed Hohler, G )(Springer, Berlin, 1988) 2 Weeber. LC e aL Ne tion of surface plasmon polariton propagation on thin metal Hansa, P K Eficiency of light emission from surface plasmons. Phys. Rev.B25,2297-2300(1982. 13. Bozhevolrryi, S I- Erland, L Leasson, K. Skovgaard, P. M. W& Hvam, I M. Waveguiding in surface m 14. Bozhevolmyi, S I, Volkow, V.S.&Leosson, K Localization and waveguiding of surface plasmon polaritons in random nanostructures. Plys Rew Left. 89, 186801(2002) ace plasmon polaritons. AppL Plys Left. 81. 1762-1764(2002) 19. Cregan, RE ef al Single-mode photonic band gap guidance of light in air. Science 285, 1537-1539 NatuReVol412414AugUst2003www.nature.com/nature e 2003 Nature Publishing Group 829new elements for SP-based photonics75. This is an area in urgent need of further work. SPs show great potential as a new class of subwavelength photonic devices; their particular attractions are their near-field character and their associated field enhancements. Nanoscale lithography enables researchers to explore the underlying science and has already led to proof-of-concept demonstrations, notably of waveguides, reflectors, beam splitters, enhanced transmission and beaming. Some of these components may find their way into the world of photonics as discrete elements. The greater dream of making a completely plasmonic circuit will require much further research. It is an exciting challenge that is stimulating activity around the world. ■ doi:10.1038/nature01937 1. Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957). 2. Burstein, E. in Polaritons(eds Burstein, E. & De Martini, F.) 1–4 (Pergamon, New York, 1974). 3. Hecht, B., Bielefeldt, H., Novotny, L., Inouye, Y. & Pohl, D. W. Local excitation, scattering, and interference of surface plasmons. Phys. Rev. Lett. 77, 1889–1892 (1996). 4. Pendry, J. Playing tricks with light. Science 285, 1687–1688 (1999). 5. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997). 6. Nie, S. M. & Emery, S. R. Probing single molecules and single nanoparticles by surface- enhanced Raman scattering. Science 275, 1102–1106 (1997). 7. Homola, J., Yee, S. S. & Gauglitz, G. Surface plasmon resonance sensors: review. Sensors Actuat. B 54, 3–15 (1999). 8. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R. & Feld, M. S. Surface enhanced Raman scattering and biophysics. J. Phys. C 14, R597–R624 (2002). 9. Sambles, J. R., Bradbery, G. W. & Yang, F. Z. Optical-excitation of surface-plasmons - an introduction. Contemp. Phys. 32, 173–183 (1991). 10. Kretschmann, E. & Raether, H. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. A 23, 2135–2136 (1968). 11. Otto, A. Exitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398 (1968). 12. Ditlbacher, H. et al. Fluorescence imaging of surface plasmon fields. Appl. Phys. Lett. 80, 404–406 (2002). 13. Ritchie, R. H., Arakawa, E. T., Cowan, J. J. & Hamm, R. N. Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21, 1530–1533 (1968). 14. Wood, R. W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Mag. 4, 396 (1902). 15. Raether, H. Surface Plasmons (ed. Hohler, G.) (Springer, Berlin, 1988). 16. Moreland, J., Adams, A. & Hansma, P. K. Efficiency of light emission from surface plasmons. Phys. Rev. B 25, 2297–2300 (1982). 17. Worthing, P. T. & Barnes, W. L. Efficient coupling of surface plasmon polaritons to radiation using a bi-grating. Appl. Phys. Lett. 79, 3035–3037 (2001). 18. Ditlbacher, H., Krenn, J. R., Schider, G., Leitner, A. & Aussenegg, F. R. Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 81, 1762–1764 (2002). 19. Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999). 20. Kitson, S. C., Barnes, W. L. & Sambles, J. R. A full photonic band gap for surface modes in the visible. Phys. Rev. Lett. 77, 2670–2673 (1996). 21. Barnes, W. L., Preist, T. W., Kitson, S. C. & Sambles, J. R. Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys. Rev. B 54, 6227–6244 (1996). 22. Barnes, W. L., Kitson, S. C., Preist, T. W. & Sambles, J. R. Photonic surfaces for surface plasmon polaritons. J. Opt. Soc. Am. A 14, 1654–1661 (1997). 23. Kreibig, U. & Vollmer, M. Optical properties of metal clusters (Springer, Berlin, 1995). 24. Special issue: Optical Properties of Nanoparticles. Appl. Phys. B 73 (2001). 25. Haynes, C. L. & Van Duyne, R. P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105, 5599–5611 (2001). 26. Sonnichsen, C. et al. Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl. Phys. Lett. 77, 2949–2951 (2000). 27. Schultz, D. A. Plasmon resonant particles for biological detection. Curr. Opin. Biotechnol. 14, 13–22 (2003). 28. Oldenburg, S. J., Genick, C. C., Clark, K. A. & Schultz, D. A. Base pair mismatch recognition using plasmon resonant particle labels. Anal. Biochem. 309, 109–116 (2002). 29. Félidj, N. et al. Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl. Phys. Lett. 82, 3095–3097 (2003). 30. Levi, S. A. et al. Fluorescence of dyes adsorbed on highly organized, nanostructured gold surfaces. Chem.-a Eur. J. 8, 3808–3814 (2002). 31. Vargas-Baca, I. et al. Linear and nonlinear optical responses of a dye anchored to gold nanoparticles dispersed in liquid and polymeric matrixes. Can. J. Chem. 80, 1625–1633 (2002). 32. Rechberger, W. et al. Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137–141 (2003). 33. Kottmann, J. P. & Martin, O. J. F. Retardation-induced plasmon resonances in coupled nanoparticles. Opt. Lett. 26, 1096–1098 (2001). 34. García-Vidal, F. J. & Pendry, J. B. Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 77, 1163–1166 (1996). 35. Gresillon, S. et al. Experimental observation of localized optical excitations in random metaldielectric films. Phys. Rev. Lett. 82, 4520–4523 (1999). 36. Weeber, J. C. et al. Observation of light confinement effects with a near-field optical microscope. Phys. Rev. Lett. 77, 5332–5335 (1996). 37. Devaux, E. et al. Local detection of the optical magnetic field in the near zone of dielectric samples. Phys. Rev. B 62, 10504–10514 (2000). 38. Silva, T. J. & Schultz, S. A scanning near-field optical microscope for the imaging of magnetic domains in reflection. Rev. Sci. Instr. 67, 715–725 (1996). 39. Hermann, C. et al. Surface-enhanced magneto-optics in metallic multilayer films. Phys. Rev. B 64, 235422 (2001). 40. Kottmann, J. P., Martin, O. J. F., Smith, D. R. & Schultz, S. Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B 64, 5402 (2001). 41. Weeber, J. C., Dereux, A., Girard, C., Krenn, J. R. & Goudonnet, J. P. Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys. Rev. B 60, 9061–9068 (1999). 42. Weeber, J. C. et al. Near-field observation of surface plasmon polariton propagation on thin metal stripes. Phys. Rev. B 64, 045411 (2001). 43. Bozhevolnyi, S. I., Erland, J., Leosson, K., Skovgaard, P. M. W. & Hvam, J. M. Waveguiding in surface plasmon polariton band gap structures. Phys. Rev. Lett. 86, 3008–3011 (2001). 44. Bozhevolnyi, S. I., Volkov, V. S. & Leosson, K. Localization and waveguiding of surface plasmon polaritons in random nanostructures. Phys. Rev. Lett. 89, 186801 (2002). 45. Krenn, J. R. et al. Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys. Rev. Lett. 82, 2590–2593 (1999). 46. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mat. 2, 229–232 (2003). insight review articles NATURE | VOL 424 | 14 AUGUST 2003 | www.nature.com/nature 829 b c Grooves -5 -0 -5 5 10 15 20 25 Z (mm) X (µm) Figure 5 Calculated pattern of light emerging from a single slit surrounded by a finite array of grooves (courtesy of F. J. García-Vidal, Universidad Autonoma de Madrid, Spain) and L. Martín-Moreno (Universidad de Zaragoza, Spain). For this simulation there were 10 grooves on each side of the slit, each of width 40 nm and depth 100 nm. The groove period was 500 nm. The contour plot shows the spatial dependence of the component of the Poynting vector along the radial direction for a wavelength of 560 nm, corresponding to a spectral transmission maximum. Blue indicates low intensity (3210-4), and red high (1). © 2003 Nature PublishingGroup