简单连通平面图的必要条件 ■欧拉公式的推论:若G是简单连通平面图(≥3),则 m≤3n-6。 口证明:至少3个顶点的简单图G中,面的最小边数是3, ∴.3r≤2m,根据欧拉公式:3r=3m+6-3n,∴.3m+6-3n<2m,即: m≤3n-6。 ■K不是平面图:在K中,n=5,m=10,3n-6=9。 平面图中,边数是有上限的。请问,这个界是否紧致?简单连通平面图的必要条件 ◼ 欧拉公式的推论:若G是简单连通平面图(n3), 则 m3n-6。 ❑ 证明:至少3个顶点的简单图G中,面的最小边数是3, 3r2m, 根据欧拉公式:3r=3m+6-3n, 3m+6-3n2m, 即: m3n-6。 ◼ K5不是平面图:在K5中,n=5,m=10, 3n-6=9。 平面图中,边数是有上限的。请问,这个界是否紧致?