正在加载图片...
工程科学学报.第43卷,第5期:619-626.2021年5月 Chinese Journal of Engineering,Vol.43,No.5:619-626,May 2021 https://doi.org/10.13374/j.issn2095-9389.2020.04.20.003;http://cje.ustb.edu.cn 印尼典型海砂矿的工艺矿物学及固态还原特性 胡兵,2,胡程飞),易凌云)区,肖华荣),黄柱成),姜雄),蔡威引 1)中冶长天国际工程有限责任公司烧结球团及直接还原工程技术中心,长沙4102052)国家烧结球团装备系统工程技术研究中心,长沙 4102053)中南大学资源加工与生物工程学院,长沙410083 ☒通信作者,E-mai:y小ycsu@126.com 摘要以经典工艺矿物学研究方法为基础,结合化学物相分析、矿物解离分析(MLA)、X射线衍射、光学显微镜、扫描电 镜X射线能谱仪(SEM-EDS)等手段对印尼典型海砂矿的矿物学及其固态还原特征进行了系统研究.结果表明:印尼海砂矿 的矿物组成主要为钛磁铁矿、次为少量假象赤铁矿、赤铁矿、钛铁矿以及辉石等,绝大部分钛磁铁矿呈致密单体或铁的富连 生体产出,偶有由固熔体分离析出形成的微细钛铁矿旷片晶.赋存于钛磁铁矿中的铁占总铁的8979%、钛为85.42%、钒则高 达97.97%.海砂矿在CFe摩尔比12、温度1300℃条件下还原60min可较好实现金属化.其还原历程遵循:Fe2.sTio.2sO4→ FeTiO3,(Fe,Mg)Ti2O5→(Fe,Mg)Ti2O5→Fe,稳定的黑钛石相是影响金属化程度的主要因素.经固态还原处理Fe元素最终富 集于金属相,V、T则赋存于渣中富钛相.为后续的分离提取创造了有利条件. 关键词印尼海砂矿:工艺矿物学:嵌布特征:还原历程:元素赋存状态 分类号TD981 Mineralogy and solid-state reduction features of typical ironsands from Indonesia HU Bing 2),HU Cheng-fep),YI Ling-yun.XIAO Hua-rong,HUANG Zhu-cheng,JIANG Xiong CAIl We 1)Engineering Center of Sinter Pellet and Direct Reduction,Zhongye Changtian International Engineering Co.,Ltd.,Changsha 410205,China 2)National Engineering Research Center of Sintering and Pelletizing Equipment System,Changsha 410205,China 3)School of Minerals Processing and Bioengineering,Central South University,Changsha 4100083,China Corresponding author,E-mail:ylycsu@126.com ABSTRACT With over 100 billion tons of reserves,the ironsands resource is mainly distributed along the "Belt and Road"countries, such as Indonesia.It is the second largest marine resource inferior to petroleum and natural gas.Ironsands mainly comprise vanadium, titanium,and iron.With advantages of easy mining,low cost,and abundance in polymetallic minerals,the ironsands resource has attracted extensive attention for its extremely high comprehensive recycling value.According to previous studies,solid-state reduction is an efficient approach to a number of processes in complex mineral resources such as ironsands,especially in vanadium-bearing titanomagnetite treatments.In this paper,the process mineralogy and direct reduction characteristics of typical ironsands from Indonesia were studied based on the classical mineralogy method combined with various characterization techniques such as chemical phase analysis,MLA,X-ray diffraction,particle size analysis,optical microscopy,and SEM-EDS.Results show that the mineral composition of the ironsands is mainly titanomagnetite,followed by a small amount of pseudo-hematite,hematite,ilmenite,pyroxene,plagioclase, and others.Most titanomagnetites exist as compact monomers or iron-rich aggregates with occasional fine ilmenite flakes formed through solid-melt separation.The iron contained in titanomagnetite phase accounts for 89.79%of the total iron in the ironsands,while titanium and vanadium account for 85.42%of the total titanium and 97.97%of the total vanadium content,respectively.Ironsands can achieve high metallization ratio when they are reduced at 1300 C for 60 min with C/Fe mole ration of 1.2.The reduction course is as follows:Fe2sTio20FeTiO3,(Fe,Mg)Ti2Os(Fe,Mg)Ti2OFe.Results reveal that the stable anosovite((Fe,Mg)Ti2Os)phase 收稿日期:202004-20 基金项目:国家自然科学基金资助项目(51504230):中南大学研究生科研创新资助项目(1053320191010)印尼典型海砂矿的工艺矿物学及固态还原特性 胡    兵1,2),胡程飞3),易凌云3) 苣,肖华荣3),黄柱成3),姜    雄3),蔡    威3) 1) 中冶长天国际工程有限责任公司烧结球团及直接还原工程技术中心,长沙 410205    2) 国家烧结球团装备系统工程技术研究中心,长沙 410205    3) 中南大学资源加工与生物工程学院,长沙 410083 苣通信作者,E-mail: ylycsu@126.com 摘    要    以经典工艺矿物学研究方法为基础,结合化学物相分析、矿物解离分析 (MLA)、X 射线衍射、光学显微镜、扫描电 镜-X 射线能谱仪 (SEM-EDS) 等手段对印尼典型海砂矿的矿物学及其固态还原特征进行了系统研究. 结果表明:印尼海砂矿 的矿物组成主要为钛磁铁矿、次为少量假象赤铁矿、赤铁矿、钛铁矿以及辉石等. 绝大部分钛磁铁矿呈致密单体或铁的富连 生体产出,偶有由固熔体分离析出形成的微细钛铁矿片晶. 赋存于钛磁铁矿中的铁占总铁的 89.79%、钛为 85.42%、钒则高 达 97.97%. 海砂矿在 C/Fe 摩尔比 1.2、温度 1300 ℃ 条件下还原 60 min 可较好实现金属化. 其还原历程遵循:Fe2.75Ti0.25O4 → FeTiO3 , (Fe, Mg)Ti2O5 → (Fe, Mg)Ti2O5 → Fe,稳定的黑钛石相是影响金属化程度的主要因素. 经固态还原处理 Fe 元素最终富 集于金属相,V、Ti 则赋存于渣中富钛相,为后续的分离提取创造了有利条件. 关键词    印尼海砂矿;工艺矿物学;嵌布特征;还原历程;元素赋存状态 分类号    TD981 Mineralogy and solid-state reduction features of typical ironsands from Indonesia HU Bing1,2) ,HU Cheng-fei3) ,YI Ling-yun3) 苣 ,XIAO Hua-rong3) ,HUANG Zhu-cheng3) ,JIANG Xiong3) ,CAI Wei3) 1) Engineering Center of Sinter Pellet and Direct Reduction, Zhongye Changtian International Engineering Co., Ltd., Changsha 410205, China 2) National Engineering Research Center of Sintering and Pelletizing Equipment System, Changsha 410205, China 3) School of Minerals Processing and Bioengineering, Central South University, Changsha 4100083, China 苣 Corresponding author, E-mail: ylycsu@126.com ABSTRACT    With over 100 billion tons of reserves, the ironsands resource is mainly distributed along the “Belt and Road” countries, such as Indonesia. It is the second largest marine resource inferior to petroleum and natural gas. Ironsands mainly comprise vanadium, titanium,  and  iron.  With  advantages  of  easy  mining,  low  cost,  and  abundance  in  polymetallic  minerals,  the  ironsands  resource  has attracted extensive attention for its extremely high comprehensive recycling value. According to previous studies, solid-state reduction is an  efficient  approach  to  a  number  of  processes  in  complex  mineral  resources  such  as  ironsands,  especially  in  vanadium-bearing titanomagnetite treatments. In this paper, the process mineralogy and direct reduction characteristics of typical ironsands from Indonesia were  studied  based  on  the  classical  mineralogy  method  combined  with  various  characterization  techniques  such  as  chemical  phase analysis, MLA, X-ray diffraction, particle size analysis, optical microscopy, and SEM-EDS. Results show that the mineral composition of the ironsands is mainly titanomagnetite, followed by a small amount of pseudo-hematite, hematite, ilmenite, pyroxene, plagioclase, and  others.  Most  titanomagnetites  exist  as  compact  monomers  or  iron-rich  aggregates  with  occasional  fine  ilmenite  flakes  formed through solid-melt separation. The iron contained in titanomagnetite phase accounts for 89.79% of the total iron in the ironsands, while titanium and vanadium account for 85.42% of the total titanium and 97.97% of the total vanadium content, respectively. Ironsands can achieve high metallization ratio when they are reduced at 1300 ℃ for 60 min with C/Fe mole ration of 1.2. The reduction course is as follows: Fe2.75Ti0.25O4 → FeTiO3 , (Fe, Mg)Ti2O5 → (Fe, Mg)Ti2O5 → Fe. Results reveal that the stable anosovite ((Fe, Mg)Ti2O5 ) phase 收稿日期: 2020−04−20 基金项目: 国家自然科学基金资助项目(51504230);中南大学研究生科研创新资助项目(1053320191010) 工程科学学报,第 43 卷,第 5 期:619−626,2021 年 5 月 Chinese Journal of Engineering, Vol. 43, No. 5: 619−626, May 2021 https://doi.org/10.13374/j.issn2095-9389.2020.04.20.003; http://cje.ustb.edu.cn
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有