正在加载图片...
f 1 RT 2-20) P RT dP|=indi In P =Pas·er(p-P)yR」 (2-21) 当x1→0时,y;*→1 f=H=1im左 fi =H x (n, RTlny) (2-26) RTI In A A21x2 A hy=x2[42+2(421-A12kx] hy2=x2[41+2(42-A1)x2 X Iny,=l 4k 4=exr(n-2) x, g In y G Gxki i f P  v - dP 1 ln P 0 i i L        = P RT P RT f (2-20) ( ) s i s i L s i i P P i P i L i P P ln RT v P P dP ln P RT dP v P RT v P f ln s i s i − − = +              + −      = −    RT 0 1 f P expv (P P ) RT  S S i L i i S i L i =  • − (2-21) 当 xi → 0 时,  i →1 (2-22) i L i 0 oL i lim i x f ~ f H x → =  (2-23) i L f i Hx ˆ = (T, P 一定, xi → 0 ) (2-24) ˆ f i xiH L i =   (2-25) ( ) = = c i 1 i ln i n RT  E G (2-26) i ln j i RT n G T ,P,n Ei =           (2-27) 2 1 2 1 2 1 2 2 1 2 2 21 2 1 2 1 1 2 1 1 1         + =         + = A x A x A ln A x A x A ln   ( )   ( )  21 12 21 2 2 12 21 12 1 2 1 2 ln 1 = x2 A + 2 A − A x ln = x A + 2 A − A x    −       = k j j j k i j j k x k x ln i x     j 1-ln exp ( ) RT  v v L ij ii i L j ij = −  −            = + −       k k kj l j l j l l i j k k ki j i j k k ki j j i j i j i G x G x G x x G G x G x ln      ij = (gij − gij) RT ( ) ij ij ij G = exp − 
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有