第6期 王书舟,等:支持向量机的训练算法综述 475。 ings of the Twenty-Fourth International Conference on Ma- [75]TRAFALIS T B,GILBERT R C.Robust classification and chine Learning(ICML2007)):Corvalis,USA,2007:807- regression using support vector machines [J].European 814. Journal of Operational Research,2006,173(3))::893- [63]SMOLA A J,VISHWANATHAN SV N,QUOC V L.Bu- 909. ndle methods for machine leaming[C]l//Advances in Neu- [76]MITRA P,MURTHY C A,PAL S K.A probabilistic ac- ral Information Processing Systems.Vancour,Canada, ive support vector learning algorithm[J].IEEE Trans on 2008. Pattern Analysis and Machine Intelligence,2004.26(3)): [6].CHEN PH,LIN CJ,SCHLKOPF B.A tutorial on v-sup- 413-418. port vector machines [J].Applied Stochastic Models in [77]TSANG I W,KWOKJT,ZURADA J M.Generalized Business and Industry,2005,21(2)):111-136. core vector machines[J]l.IEEE Trans on Neural Net- [65]]KAZUSHI I.Effects of kernel function on v-support vector works,.2006,17(5)):1126-1140. machines in extreme cases[J].IEEE Trans on Neural Net- [78]ZANNI L.SERAFINI T.ZANGHIRATI G.Parallel soft- works,2006,17(1),:1-9. ware for training large scale support vector machines on [66]MANGASARIAN O L,WILD E W.Multisurface proximal multiprocessor systems[J].Journal of Machine Learning support vector machine classification via generalized eigen- Research,2006,7(7):1467-1492. values[J]..IEEE Trans on Pattern Analysis and Machine [赵春晖,陈万海,郭春燕.多类支持向量机方法的研究 Intelligence,2006,28(1)1:69-74 现状与分析[刀1.智能系统学报,2007,2(4):11-17. [67]LEE Y J,HUANG S Y.Reduced support vector ma- ZHAO Chunhui,CHEN Wanhai,GUO Chunyan.Re- chines:a statistical theory[J].IEEE Trans on Neural Net- search and analysis of methods for multiclass support vector works,2007,18(1)):1-13. machines[J].CAAI Transactions on Intelligent Systems, [68]ANTHONY K,PHILIPPE D W.Comments on"pruning 2007,2(4)311-17. error minimization in least squares support vector ma- [80]THEODORIDIS S,MAVROFORAKIS M.Reduced convex chines"[J].IEEE Trans on Neural Network,2007,18 hulls::a geometric approach to support vector machines ②):606609. ]IEEE Signal Processing Magazine,2007,24(3)): [60]JIAO Licheng BO Liefeng WANG Ling Fast sparse ap- 119-122. proximation for least squares support vector machine[J]. [81]BRUZZONE L,CHI M.MARCONCINI M.A novel trans- IEEE Trans on Neural Network,2007,18(3)):685-697. ductive SVMs for semi-supervised classification of remote- [70]]WANG Defeng,DANIEL S Y,ERIC CC T,Weighted ensing images[J]].IEE Trans on Geoscience and Re- mahalanobis distance kernels for support vector machines ote Sensing,2006,44(11)):3363-3373. I.IEEE Trans on Neural Networks,2007,18(5): 8]ASTORINO A,FUDULI A.Nonsmooth optimization tech- i453-1462. niques for semisupervised classification[J]].IEEE Trans [71]DU Shuxin,CHEN Shengtan.Weighted support vector ma- on Pattern Analysis and Machine Intelligence,2007.29 chine for classifications[C]//IEEE International Confer- 12:2135-2142.. ence on Systems,Man and Cybernetics.Hawaii,USA, 作者简介: 2005,4::3866-3871. 王书舟,男,1972年生,博士研究 [72]CAWLEY G C.An empirical evaluation of the fuzzy kemel 生,主要研究方向为支持向量机建模、 perceptron[J].IEEE Trans on Neural Networks,2007, 直升机控制与仿真.发表学术论文多 18(3))÷935-937 篇,6篇被EI检索。 [73]]HAO P Y,CHIANG J H.Fuzy regression analysis by support vector learning approach[J].IEEE Trans on Fuzzy Systems,2008,16(2)):428-441. 伞治,男,1951年生,教授,博士 [74]]CHUANG CC,SU SF,JENGJT,et al.Robust support 生导师.中国系统仿真学会理事.主要 ector regression networks for function approximation with 研究方向为复杂大系统的系统控制与 outliers[J].IEEE Trans on Neural Networks,2002,13 仿真.获国家科技进步二等奖2项,三 6:1322-1330 等奖1项,省部级科技进步奖多项.发 表学术论文多篇,40余篇被EI收录.[76] MITRA P,MURTHY C A,PAL S K. A probabilistic acive support vector learning algorithm[J] . IEEE Trans on Pattern Analysis and Machine Intelligence,2004,26(3) : 413-418. [68] ANTHONY K,PHILIPPE D W. Comments on"pruning error minimization in least squares support vector machines"[J]. IEEE Trans on Neural Network,2007,18 (2) : 606-609. [63] SMOLA A J,VISHWANATHAN SV N,QUOC V L. Bundle methods for machine learning[ C] //Advances in Neural Information Processing Systems. Vancour, Canada, 2008. 伞 冶,男,1951年生,教授,博士 [81] BRUZZONE L,CHI M,MARCONCINI M. A novel transductive SVMs for semi-supervised classification of remoteensing images[J] . IEE Trans on Geoscience and Remote Sensing,2006,44(11) :3363-3373. ings of the Twenty-Fourth International Conference on Machine Learning(ICML2007) :Corvalis,USA,2007: 807- 814. [75] TRAFALIS T B,GILBERT R C. Robust classification and regression using support vector machines [J] . European Journal of Operational Research,2006,173(3) : 893- 909. [70] WANG Defeng,DANIEL S Y,ERIC C C T,Weighted mahalanobis distance kernels for support vector machines [J] . IEEE Trans on Neural Networks,2007,18(5) : i453-1462. [69]JIAO Licheng,BO Liefeng,WANG Ling. Fast sparse approximation for least squares support vector machine[J]. IEEE Trans on Neural Network,2007,18(3) :685-697. [71] DU Shuxin,CHEN Shengtan. Weighted support vector machine for classifications[C] //IEEE International Conference on Systems,Man and Cybernetics. Hawaii,USA, 2005,4: 3866-3871. [64] CHEN PH,LIN CJ, SCHLKOPF B. A tutorial on v-support vector machines [J] . Applied Stochastic Models in Business and Industry,2005,21(2) :111-136 [78] ZANNI L, SERAFINI T,ZANGHIRATI G. Parallel software for training large scale support vector machines on multiprocessor systems[J] . Journal of Machine Learning Research,2006,7(7) : 1467-1492. [77] TSANG I W,KWOKJT,ZURADA J M. Generalized core vector machines[J] . IEEE Trans on Neural Networks,2006,17(5) :1126-1140. [80] THEODORIDIS S,MAVROFORAKIS M. Reduced convex hulls: a geometric approach to support vector machines [J] . IEEE Signal Processing Magazine,2007,24(3) : 119-122. [79] 赵春晖,陈万海,郭春燕.多类支持向量机方法的研究 现状与分析[J] .智能系统学报,2007,2(4) :11-17. ZHAO Chunhui,CHEN Wanhai,GUO Chunyan. Research and analysis of methods for multiclass support vector machines[ J] . CAAI Transactions on Intelligent Systems, 2007,2(4) :11-17. [74] CHUANG C C,SU SF,JENGJT,et al. Robust support ector regression networks for function approximation with outliers[J]. IEEE Trans on Neural Networks,2002,13 (6) : 1322-1330 [73] HAO P Y, CHIANG J H. Fuzy regression analysis by support vector learning approach[ J]. IEEE Trans on Fuzzy Systems,2008,16(2) :428-441. 王书舟,等: 支持向量机的训练算法综述 [66] MANGASARIAN O L,WILD E W. Multisurface proximal support vector machine classification via generalized eigenvalues[J] . IEEE Trans on Pattern Analysis and Machine Intelligence,2006,28(1) :69-74. [67] LEE Y J,HUANG S Y. Reduced support vector machines: a statistical theory[J]. IEEE Trans on Neural Networks,2007,18(1) : 1-13. 第6期 [72] CAWLEY G C. An empirical evaluation of the fuzzy kemel perceptron[ J]. IEEE Trans on Neural Networks,2007, 18(3) :935-937. 作者简介: 475。 [82] ASTORINO A,FUDULI A. Nonsmooth optimization techniques for semisupervised classification[J] . IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29 (12) :2135-2142. 王书舟,男,1972年生,博士研究 生,主要研究方向为支持向量机建模、 直升机控制与仿真.发表学术论文多 篇,6 篇被EI检索. [65] KAZUSHI I. Effects of kernel function on v-support vector machines in extreme cases[J]. IEEE Trans on Neural Networks,2006,17(1) : 1-9. 生导师.中国系统仿真学会理事.主要 研究方向为复杂大系统的系统控制与 仿真.获国家科技进步二等奖2项,三 等奖1项,省部级科技进步奖多项.发 表学术论文多篇,40余篇被EI收录