正在加载图片...
B. Riccardi et al. Fusion Engineering and Design 51-52(2000)11-22 sign will be necessary. Specific experimental cam- [7 L. Giancarli, A. Caso, et al., R&D. Issues for SicdSic paigns will also be required to validate the models composites structural material in fusion power reactor and established design criteria. Moreover. the blankets, Proceedings of IAEA, Tc Meeting on FPPD Culham. 24-27 March 1998 up of a verification methodology for structural [8G. Aiello, M. Eid, L. Giancarli-2D neutronic analysis of analysis is mandatory for any reactor design study the tauro breeding blanket. CEA Report DMT/ involving CMCs SERMA. 1998 The improvement of both thermal conductivity 9]G. Aiello,Y Poitevin, J.F. Salvy, Modelling of SicSic and stability of thermo-mechanical properties af mposite structures ter irradiation remain the main issue of SiC/Sic SFNT-5, Rome, 19-24, September 1999 R&D: the constant progress in fibre quality which [10] G. Golfier et al, Performances of the TAURO blanket system associated with a liquid-metal cooled divertor, Proc. led to the fabrication of almost stoichiometric SFNT-5. Rome, 19-24, September 1999 fibres is a good premise for reducing such con- [11] A Caso, P Huet, P.C. Tramier, A new SiC/SiC composite cern. However, a large effort has to be made for s low activation structural material. Proc. SiC/SiC Com the matrix-fibre interface and matrix processing sites Workshop JRC/Ispra (D),28-29 October itself in order to reduce the differences in perfor- [12]A. Donato, C.A. Nannetti, A Or mances with respect to the bulk CVD SiC: this andro, G. Filacchioni, A. Masci, Sic/SiC fibre matrix composites for fusion application: a new objective may probably be achieved by using pro- turing process, in: C. Varandas, F. Serra(Eds) cessing parameters which allow us to maximise Technology 1996-1%th SOFT Lisbon, North Holland the grain size Amsterdam, 1997 o Hermeticity and joining techniques need further [13]A. Ortona, A. Donato, G. Filacchioni, U de Angelis,A elopment to study their compatibility with fu- La barbera. C.A. Nannetti. B. Riccardi. J. Heatmar sion environments and to improve their perfor SiC/SiCf CMC manufacturing by CVl-PIP techniques rocess optimisation. Proc. of ISFNT-S, Rome, 19-24 mance. Finally it is mandatory for a strong September 1999 coordination of R&D efforts among research in-[14]A.Frias Rebelo,HWScholz,H.Kolbe,GPTartaglia stitutes, including participation of industry P. Fenici, Comparison of the mechanical behaviour of hrough all the development stages SiCf/SiC composites following neutron irradiation and References [ H.W. Scholz, P. Fenici, A. Frias Rebelo, Thin SiC/Sic ending specimens for high fluence helium implantation [1] P. Fenici, H w. Scholz, Advanced low-activation materia n: P. Jung, H. Ullmaier(Eds ) Proceedings of IEA.- Fibre-reinforced ceramic composites, J. Nucl. Mater. 212- ational Symposium on Miniaturized Specimens for Test. ng of Irradiated Materials, Jurlich, Germany, 1995. 2 ARIES Team, s Sharafat, F. Najmabadi, C.P.C. We [16] H W. Scholz, A. Frias Rebelo, D.G. Rickerby, W.E.Lee, RIESI fusion power core engineering, Fusion Eng Des. J H. Evans, P. Fenici, Swelling behaviour and TEM stud 18(1991)215-22 f SiC composites after fusion relevant alpha-implan [3 DREAM Design Team, S. Ueda, S. Nishio, Y. Seki, R. tation,J.Nucl. Mater.258-263(1998)1572-1576 mihara, J Adachi, S. Yamazaki, A fusion power reactor [7R. Scholz, Light ion irradiation creep of Sic fibres in cept using Sic/SiC composites, J Nucl. Mater. 258-263 torsion,J.Nucl. Mater.258-263(1998)1533-1539 998)1589-1593 [18L. Fabbri, E. Scafe, Thermal conductivity of reaction 4A.S. Peres Ramirez, A. Caso, L. Giancarli, et al, TAURO: bonded and reaction sintered silicon silicon carbide com ceramIc composite material self cooled pb- sites,J. Nucl. Mater. 212-215(1977)835. I7Li breeder blanket J. Nucl. Mater. 233-237 [19] A. La Barbera, B. Riccardi, A. Donato, A. Orsini, L. (1996)1257-1261 Moreschi. F. Salvi. S. Casadio. G. Fllacchioni. A. Mase [I Cook, P on the e C.A. Nannetti, F. Padella, Compatibility of Sic/SiC fibre tal assessment of fusion power(SEAFP) Fusion Eng Des composite with lithium silicate and lithium titanate 25(1994)179-191 usion relevant conditions, Proceedings of the 20th Sympo [6R. Scholz, J de Creef, C. Inche, Magneto um on Fu echnology, Marseille, 7-11 Septemb HD) considerations for a liquid metal blanket and a composite structure. Proceedings of the 20th [20A. Gasse, F. Saint Antonin. um on Fusion Technology, Marseilles, 7-ll Sep reactive BraSic alloys for SiC/SiC joining, Report CEA-Grenoble, DEM n. DR 25/B. Riccardi et al. / Fusion Engineering and Design 51–52 (2000) 11–22 21 sign will be necessary. Specific experimental cam￾paigns will also be required to validate the models and established design criteria. Moreover, the set up of a verification methodology for structural analysis is mandatory for any reactor design study involving CMCs. The improvement of both thermal conductivity and stability of thermo-mechanical properties af￾ter irradiation remain the main issue of SiCf /SiC R&D: the constant progress in fibre quality which led to the fabrication of almost stoichiometric fibres is a good premise for reducing such con￾cern. However, a large effort has to be made for the matrix–fibre interface and matrix processing itself in order to reduce the differences in perfor￾mances with respect to the bulk CVD SiC: this objective may probably be achieved by using pro￾cessing parameters which allow us to maximise the grain size. Hermeticity and joining techniques need further development to study their compatibility with fu￾sion environments and to improve their perfor￾mance. Finally it is mandatory for a strong coordination of R&D efforts among research in￾stitutes, including participation of industry through all the development stages. References [1] P. Fenici, H.W. Scholz, Advanced low-activation materials. Fibre-reinforced ceramic composites, J. Nucl. Mater. 212- 215 (1994) 60–68. [2] ARIES Team, S. Sharafat, F. Najmabadi, C.P.C. Wong, ARIES-I fusion power core engineering, Fusion Eng. Des. 18 (1991) 215–222. [3] DREAM Design Team, S. Ueda, S. Nishio, Y. Seki, R. Kurihara, J. Adachi, S. Yamazaki, A fusion power reactor concept using SiC/SiC composites, J. Nucl. Mater. 258-263 (1998) 1589–1593. [4] A.S. Peres Ramirez, A. Caso, L. Giancarli, et al., TAURO: a ceramic composite structural material self cooled Pb– 17Li breeder blanket concept, J. Nucl. Mater. 233-237 (1996) 1257–1261. [5] I. Cook, Progress on the European safety and environmen￾tal assessment of fusion power (SEAFP), Fusion Eng. Des. 25 (1994) 179–191. [6] R. Scholz, J. de Creef, C. Vinche, Magnetohydrodynamic (MHD) considerations for a liquid metal blanket and a SiC/SiC composite structure. Proceedings of the 20th Symposium on Fusion Technology, Marseilles, 7–11 Sep￾tember 1998. [7] L. Giancarli, A. Caso, et al., R&D. Issues for SiCf /SiC composites structural material in fusion power reactor blankets, Proceedings of IAEA, Tc Meeting on FPPD, Culham, 24–27 March 1998. [8] G. Aiello, M. Eid, L. Giancarli-2D neutronic analysis of the TAURO breeding blanket. CEA Report DMT/ SERMA, 1998. [9] G. Aiello, Y. Poitevin, J.F. Salvy, Modelling of SiCf /SiC composite structures for nuclear components, Proc. ISFNT-5, Rome, 19–24, September 1999. [10] G. Golfier et al., Performances of the TAURO blanket system associated with a liquid-metal cooled divertor, Proc. ISFNT-5, Rome, 19–24, September 1999. [11] A. Caso, P. Huet, P.C. Tramier, A new SiC/SiC composite as low activation structural material. Proc. SiC/SiC Com￾posites Workshop JRC/Ispra (I), 28–29 October 1996. [12] A. Donato, C.A. Nannetti, A. Ortona, S. Botti, G. d’Ales￾sandro, G. Filacchioni, A. Masci, SiC/SiC fibre ceramic matrix composites for fusion application: a new manufac￾turing process, in: C. Varandas, F. Serra (Eds.), Fusion Technology 1996 — 19th SOFT Lisbon, North Holland, Amsterdam, 1997. [13] A. Ortona, A. Donato, G. Filacchioni, U. de Angelis, A. La Barbera, C.A. Nannetti, B. Riccardi, J. Heatman, SiC/SiCf CMC manufacturing by CVI-PIP techniques: process optimisation. Proc. of ISFNT-S, Rome, 19–24 September 1999. [14] A.J. Frias Rebelo, H.W. Scholz, H. Kolbe, G.P. Tartaglia, P. Fenici, Comparison of the mechanical behaviour of SiCf/SiC composites following neutron irradiation and helium implantation, J. Nucl. Mater. 258-263 (1998) 1583– 1588. [15] H.W. Scholz, P. Fenici, A. Frias Rebelo, Thin SiC/SiC bending specimens for high fluence helium implantation. In: P. Jung, H. Ullmaier (Eds.). Proceedings of IEA-Inter￾national Symposium on Miniaturized Specimens for Test￾ing of Irradiated Materials, Jurlich, Germany, 1995. [16] H.W. Scholz, A. Frias Rebelo, D.G. Rickerby, W.E. Lee, J.H. Evans, P. Fenici, Swelling behaviour and TEM studies of SiCf /SiC composites after fusion relevant alpha-implan￾tation, J. Nucl. Mater. 258–263 (1998) 1572–1576. [17] R. Scholz, Light ion irradiation creep of SiC fibres in torsion, J. Nucl. Mater. 258–263 (1998) 1533–1539. [18] L. Fabbri, E. Scafe`, Thermal conductivity of reaction bonded and reaction sintered silicon/silicon carbide com￾posites, J. Nucl. Mater. 212–215 (1977) 835. [19] A. La Barbera, B. Riccardi, A. Donato, A. Orsini, L. Moreschi, F. Salvi, S. Casadio, G. Filacchioni, A. Masci, C.A. Nannetti, F. Padella, Compatibility of SiC/SiC fibre composite with lithium silicate and lithium titanate in fusion relevant conditions, Proceedings of the 20th Sympo￾sium on Fusion Technology, Marseille, 7–11 September, 1998. [20] A. Gasse, F. Saint Antonin, G. Coing Boyat, Specific non reactive BraSiC alloys for SiC/SiC joining, Report CEA-Grenoble, DEM n.DR 25/
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有