正在加载图片...
在一般情况下: 设F()=f(a,则∫/(am=F()+C 如果u=(x)(可微) dFi(x=fip(x)lo(x)dx ∫/1(x)p(x)k=F(x)+C I f(u)du u=o(x) 由此可得换元法定理在一般情况下: 设 F(u) = f (u), 则 ( ) ( ) .  f u du = F u + C 如果 u = (x) (可微)  dF[(x)] = f[(x)](x)dx   f[(x)](x)dx = F[(x)]+ C =  = ( ) [ ( ) ] u du u x f  由此可得换元法定理
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有