正在加载图片...
.754 工程科学学报,第42卷,第6期 [8]Toribio J.Gonzalez B,Matos J C.Micro-and macro-analysis of the a heavy haul railway rail.Eng Fail Anal,2019,96:320 fatigue crack growth in pearlitic steels.Cienc Tecnol Mater,2008. [15]Korda AA,Mutoh Y,Miyashita Y,et al.In situ observation of 20(1-2):68 fatigue crack retardation in banded ferrite-pearlite microstructure [9]Maya-Johnson S,Ramirez A J,Toro A.Fatigue crack growth rate due to crack branching.Scripta Mater,2006,54(11):1835 of two pearlitic rail steels.Eng Fract Mech,2015,138:63 [16]Eden H C,Garnham J E,Davis C L.Influential microstructural [10]Guan MF,Yu H.Fatigue crack growth behaviors in hot-rolled low changes on rolling contact fatigue crack initiation in pearlitic rail carbon steels:a comparison between ferrite-pearlite and ferrite- steels.Mater Sci Technol,2005,21(6):623 bainite microstructures.Mater SciEng,013,559:875 [17]Garnham J E,Davis C L.The role of deformed rail microstructure [11]Chen L,Guo F X,Wang H J,et al.Effect of microstructure on on rolling contact fatigue initiation.Wear,2008,265(9-10):1363 fatigue crack propagation behavior of U20Mn bainite steel.Trans [18]Tomota Y,Watanabe O,Kanie A,et al.Effect of carbon Mater Heat Treat,2018,39(2):119 concentration on tensile behaviour of pearlitic steels.Mater Sci (陈林,郭飞翔,王慧军,等.微观组织对U20M贝氏体钢疲劳裂 Technol,2003,19(12):1715 纹扩展行为的影响.材料热处理学报,2018.39(2):119) [12]Sun Z Y,Zhou H,Cheng X H.Impact toughness of low-carbon [19]Pardoen T,Dumont D.Deschamps A.et al.Grain boundary versus bainite steel with initial cracks.J Shanghai Jiaotong Univ,2016, transgranular ductile failure.J Mech Phys Solids,2003,51(4):637 50(7):1000 [20]Wang J Y,Sun C X,Zhang J.Wheel-rail contact mechanics (孙志永,周华,程先华.含有初始裂纹的低碳贝氏体钢的冲击 analysis of intemal cracks.J Dalian Jiaotong Univ,2017,38(6): 韧性.上海交通大学学报,2016,50(7):1000) 50 [13]Teshima T,Kosaka M,Ushioda K,et al.Local cementite cracking (汪金余,孙传喜,张军.内部存在裂纹的轮轨接触力学分析,大 induced by heterogeneous plastic deformation in lamellar pearlite. 连交通大学学报,2017,38(6):50) Mater Sci Eng A,2017,679:223 [21]Maya-Johnson S,Santa J F,Toro A.Dry and lubricated wear of [14]Masoumi M,Sinatora A,Goldenstein H.Role of microstructure rail steel under rolling contact fatigue-Wear mechanisms and crack and crystallographic orientation in fatigue crack failure analysis of growth.Weaw,2017,380-381:240Toribio J, González B, Matos J C. Micro-and macro-analysis of the fatigue crack growth in pearlitic steels. Ciênc Tecnol Mater, 2008, 20(1-2): 68 [8] Maya-Johnson S, Ramirez A J, Toro A. Fatigue crack growth rate of two pearlitic rail steels. Eng Fract Mech, 2015, 138: 63 [9] Guan M F, Yu H. Fatigue crack growth behaviors in hot-rolled low carbon  steels:  a  comparison  between  ferrite –pearlite  and  ferrite – bainite microstructures. Mater Sci Eng A, 2013, 559: 875 [10] Chen  L,  Guo  F  X,  Wang  H  J,  et  al.  Effect  of  microstructure  on fatigue crack propagation behavior of U20Mn bainite steel. Trans Mater Heat Treat, 2018, 39(2): 119 (陈林, 郭飞翔, 王慧军, 等. 微观组织对U20Mn贝氏体钢疲劳裂 纹扩展行为的影响. 材料热处理学报, 2018, 39(2):119) [11] Sun  Z  Y,  Zhou  H,  Cheng  X  H.  Impact  toughness  of  low-carbon bainite steel with initial cracks. J Shanghai Jiaotong Univ, 2016, 50(7): 1000 (孙志永, 周华, 程先华. 含有初始裂纹的低碳贝氏体钢的冲击 韧性. 上海交通大学学报, 2016, 50(7):1000) [12] Teshima T, Kosaka M, Ushioda K, et al. Local cementite cracking induced by heterogeneous plastic deformation in lamellar pearlite. Mater Sci Eng A, 2017, 679: 223 [13] Masoumi  M,  Sinatora  A,  Goldenstein  H.  Role  of  microstructure and crystallographic orientation in fatigue crack failure analysis of [14] a heavy haul railway rail. Eng Fail Anal, 2019, 96: 320 Korda  A  A,  Mutoh  Y,  Miyashita  Y,  et  al. In situ observation  of fatigue crack retardation in banded ferrite –pearlite microstructure due to crack branching. Scripta Mater, 2006, 54(11): 1835 [15] Eden  H  C,  Garnham  J  E,  Davis  C  L.  Influential  microstructural changes on rolling contact fatigue crack initiation in pearlitic rail steels. Mater Sci Technol, 2005, 21(6): 623 [16] Garnham J E, Davis C L. The role of deformed rail microstructure on rolling contact fatigue initiation. Wear, 2008, 265(9-10): 1363 [17] Tomota  Y,  Watanabe  O,  Kanie  A,  et  al.  Effect  of  carbon concentration  on  tensile  behaviour  of  pearlitic  steels. Mater Sci Technol, 2003, 19(12): 1715 [18] Pardoen T, Dumont D, Deschamps A, et al. Grain boundary versus transgranular ductile failure. J Mech Phys Solids, 2003, 51(4): 637 [19] Wang  J  Y,  Sun  C  X,  Zhang  J.  Wheel-rail  contact  mechanics analysis of internal cracks. J Dalian Jiaotong Univ, 2017, 38(6): 50 (汪金余, 孙传喜, 张军. 内部存在裂纹的轮轨接触力学分析. 大 连交通大学学报, 2017, 38(6):50) [20] Maya-Johnson  S,  Santa  J  F,  Toro  A.  Dry  and  lubricated  wear  of rail steel under rolling contact fatigue-Wear mechanisms and crack growth. Wear, 2017, 380-381: 240 [21] · 754 · 工程科学学报,第 42 卷,第 6 期
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有