正在加载图片...
李蕊等:微波水热法快速合成氧化锌纳米棒及其光催化性能 83 罗丹明B的降解率可达98.5%,且在可见光的照射 nanocrsytal growth in a chemical vapor deposition process.J Plrys 下也显示出一定的光催化降解性能. Chem B,2004,108(30):10899 [15]Chen N L,Yang S R,Ren Y P,et al.Preparation of rod like oxide 参考文献 of zinc and its photocatalytic performance.J Lanzhou Univ Technol,2017,43(2):76 [1]Fujishima A.Honda K.Electrochemical photolysis of water at a (陈娜丽,杨树荣,任亚鹏,等.棒状氧化锌的制备及其光催化性 semiconductor electrode.Nature,1972,238(5358):37 能.兰州理工大学学报,2017,43(2):76) [2]Zhang JL,Wu Y M.Xing M Y,et al.Development of modified N [16]Polsongkram D,Chamninok P,Pukird S,et al.Effect of synthesis doped TiO photocatalyst with metals,nonmetals and metal conditions on the growth of Zno nanorods via hydrothermal oxides.Energy Emviron Sci,2010,3(6):715 method..Physica B,2008,403(19-20:3713 [3]Chen S F,Zhao W,Liu W,et al.Preparation characterization and [17]Chen G,Li L,Tao C Y,et al.Effects of microwave heating on activity evaluation of p-n junction photocatalyst p-NiO/n-ZnO.J Sol-Gel Sci Technol,2009.50(3):387 microstructures and structure properties of the manganese ore.J [4]Zhang M L,An T C.Hu X H,et al.Preparation and photocatalytic Alloys Compd,2016,657:515 properties of a nanometer ZnO-SnO,coupled oxide.App/Catal 4, [18]Anas S,Rahul S,Babitha K B,et al.Microwave accelerated 2004,260(2):215 synthesis of zinc oxide nanoplates and their enhanced [5]Vinodgopal K,Kmat P V.Enhanced rates of photocatalytic photocatalytic activity under UV and solar illuminations.Appl Surf Sci,2015,355:98 degradation of an azo dye using SnOz/TiO2 coupled semiconductor thin films.Environ Sci Technol,1995,29(3):841 [19]Lavand A B,Malghe Y S.Synthesis,characterization and visible [6]Othman A A,Ali M A,Ibrahim E MM,et al.Influence of Cu light photocatalytic activity of nitrogen-doped zinc oxide doping on structural,morphological,photoluminescence,and nanospheres.JAsian Ceram Soc,2015,3(3):305 electrical properties of ZnO nanostructures synthesized by ice-bath [20]Jing X Y,Kuang WW,Liu J Y.One-step preparation of zinc assisted sonochemical method.JAlloys Compd,2016,683:399 oxide micron-powders by microwave hydrolysis.J Funct Mater, [7]Sun Q Q.Wang S M,Wang Z M.Preparation and doping 200839(7):1186 modification of ZnO nanorods by microwave heating.J Mater Sci (景晓燕,匡巍巍,刘婧媛.微波水热法一步合成微米氧化锌粒 Emg,2013,31(5):732 子.功能材料,2008,39(7):1186) (孙强强,王书民,王正民.微波法制备纳米棒状氧化锌及其掺 [21]Shaporev A S,Ivanov VK.Baranchikov A E,et al.Microwave- 杂改性.材料科学与工程学报,2013,31(5):732) assisted hydrothermal synthesis and photocatalytic activity of ZnO. [8]Thankachan R M,Joy N,Abraham J,et al.Enhanced norg Mater,.2007,43(1):35 photocatalytic performance of ZnO nanostructures produced via a [22]Music S,Saric A,Popovic S.Formation of nanosize ZnO particles quick microwave assisted route for the degradation of rhodamine by thermal decomposition of zinc acetylacetonate monohydrate. in aqueous solution.Mater Res Bull,2017.85:131 Ceram In,2010,36(3):1117 [9]Mo M,Yu J C,Zhang L,et al.Self-assembly of ZnO nanorods and [23]Mendoza-Mendoza E,Nunez-Briones A G,Garcia-Cerda L A,et nanosheets into hollow microhemispheres and microspheres.Adv al.One-step synthesis of Zno and Ag/Zno heterostructures and Ma1er,2005,17(6):756 their photocatalytic activity.Ceram Int,2018,44(6):6176 [10]Qi K Z,Cheng B,Yu J G,et al.Review on the improvement of the [24]Huang J F,Xia C K,Cao L Y,et al.Facile microwave photocatalytic and antibacterial activities of ZnO.JAlloys Compd hydrothermal synthesis of zinc oxide one-dimensional 2017,727:792 nanostructure with three-dimensional morphology.Mater Sci Eng [11]Ba-Abbad MM.Kadhum AA H.Mohamad A B.et al.The effect B.2008.150(3):187 of process parameters on the size of ZnO nanoparticles synthesized [25]Cao G X,Hong K Q,Wang W D,et al.Fast growth of well- via the sol-gel technique.JAlloys Compd,2013,550:63 aligned ZnO nanowire arrays by a microwave heating method and [12]Hirate T,Kimpara T,Nakamura S,et al.Control of diameter of their photocatalytic properties.Nanotechnology,2016,27(43): ZnO nanorods grown by chemical vapor deposition with laser 435402 ablation of ZnO.Superlattices Microstruct,2007,42(1-6):409 [26]Xu A J,Feng S S,Shen S J,et al.Enhanced visible light- [13]Labuayai S,Promarak V,Maensiri S.Synthesis and optical responsive photocatalytic properties of Ag/BiPbOCl nanosheet properties of nanocrystalline ZnO powders prepared by a direct composites.Nanoscale Res Lett,2018,13:292 thermal decomposition route.App/Phys 4,2009,94(4):755 [27]Baruah S,Dutta J.Hydrothermal growth of ZnO nanostructures. [14]Zhang B P,Binh N T,Wakatsuki K,et al.Pressure-dependent ZnO Sci Technol Ady Mater,2009,10(1):013001罗丹明 B 的降解率可达 98.5%,且在可见光的照射 下也显示出一定的光催化降解性能. 参    考    文    献 Fujishima  A,  Honda  K.  Electrochemical  photolysis  of  water  at  a semiconductor electrode. Nature, 1972, 238(5358): 37 [1] Zhang J L, Wu Y M, Xing M Y, et al. Development of modified N doped  TiO2 photocatalyst  with  metals,  nonmetals  and  metal oxides. Energy Environ Sci, 2010, 3(6): 715 [2] Chen S F, Zhao W, Liu W, et al. Preparation characterization and activity  evaluation  of  p-n  junction  photocatalyst  p-NiO/n-ZnO. J Sol-Gel Sci Technol, 2009, 50(3): 387 [3] Zhang M L, An T C, Hu X H, et al. Preparation and photocatalytic properties of a nanometer ZnO‒SnO2 coupled oxide. Appl Catal A, 2004, 260(2): 215 [4] Vinodgopal  K,  Kmat  P  V.  Enhanced  rates  of  photocatalytic degradation of an azo dye using SnO2 /TiO2 coupled semiconductor thin films. Environ Sci Technol, 1995, 29(3): 841 [5] Othman  A  A,  Ali  M  A,  Ibrahim  E  M  M,  et  al.  Influence  of  Cu doping  on  structural,  morphological,  photoluminescence,  and electrical properties of ZnO nanostructures synthesized by ice-bath assisted sonochemical method. J Alloys Compd, 2016, 683: 399 [6] Sun  Q  Q,  Wang  S  M,  Wang  Z  M.  Preparation  and  doping modification of ZnO nanorods by microwave heating. J Mater Sci Eng, 2013, 31(5): 732 (孙强强, 王书民, 王正民. 微波法制备纳米棒状氧化锌及其掺 杂改性. 材料科学与工程学报, 2013, 31(5):732 ) [7] Thankachan  R  M,  Joy  N,  Abraham  J,  et  al.  Enhanced photocatalytic performance of ZnO nanostructures produced via a quick microwave assisted route for the degradation of rhodamine in aqueous solution. Mater Res Bull, 2017, 85: 131 [8] Mo M, Yu J C, Zhang L, et al. Self-assembly of ZnO nanorods and nanosheets  into  hollow  microhemispheres  and  microspheres. Adv Mater, 2005, 17(6): 756 [9] Qi K Z, Cheng B, Yu J G, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloys Compd, 2017, 727: 792 [10] Ba-Abbad M M, Kadhum A A H, Mohamad A B, et al. The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol-gel technique. J Alloys Compd, 2013, 550: 63 [11] Hirate  T,  Kimpara  T,  Nakamura  S,  et  al.  Control  of  diameter  of ZnO  nanorods  grown  by  chemical  vapor  deposition  with  laser ablation of ZnO. Superlattices Microstruct, 2007, 42(1-6): 409 [12] Labuayai  S,  Promarak  V,  Maensiri  S.  Synthesis  and  optical properties  of  nanocrystalline  ZnO  powders  prepared  by  a  direct thermal decomposition route. Appl Phys A, 2009, 94(4): 755 [13] [14] Zhang B P, Binh N T, Wakatsuki K, et al. Pressure-dependent ZnO nanocrsytal growth in a chemical vapor deposition process. J Phys Chem B, 2004, 108(30): 10899 Chen N L, Yang S R, Ren Y P, et al. Preparation of rod like oxide of  zinc  and  its  photocatalytic  performance. J Lanzhou Univ Technol, 2017, 43(2): 76 (陈娜丽, 杨树荣, 任亚鹏, 等. 棒状氧化锌的制备及其光催化性 能. 兰州理工大学学报, 2017, 43(2):76 ) [15] Polsongkram D, Chamninok P, Pukird S, et al. Effect of synthesis conditions  on  the  growth  of  ZnO  nanorods via hydrothermal method. Physica B, 2008, 403(19-20): 3713 [16] Chen  G,  Li  L,  Tao  C  Y,  et  al.  Effects  of  microwave  heating  on microstructures  and  structure  properties  of  the  manganese  ore. J Alloys Compd, 2016, 657: 515 [17] Anas  S,  Rahul  S,  Babitha  K  B,  et  al.  Microwave  accelerated synthesis  of  zinc  oxide  nanoplates  and  their  enhanced photocatalytic activity under UV and solar illuminations. Appl Surf Sci, 2015, 355: 98 [18] Lavand A B, Malghe Y S. Synthesis, characterization and visible light  photocatalytic  activity  of  nitrogen-doped  zinc  oxide nanospheres. J Asian Ceram Soc, 2015, 3(3): 305 [19] Jing  X  Y,  Kuang  W  W,  Liu  J  Y.  One-step  preparation  of  zinc oxide  micron-powders  by  microwave  hydrolysis. J Funct Mater, 2008, 39(7): 1186 (景晓燕, 匡巍巍, 刘婧媛. 微波水热法一步合成微米氧化锌粒 子. 功能材料, 2008, 39(7):1186 ) [20] Shaporev A S, Ivanov V K, Baranchikov A E, et al. Microwave￾assisted hydrothermal synthesis and photocatalytic activity of ZnO. Inorg Mater, 2007, 43(1): 35 [21] Music S, Saric A, Popovic S. Formation of nanosize ZnO particles by  thermal  decomposition  of  zinc  acetylacetonate  monohydrate. Ceram Int, 2010, 36(3): 1117 [22] Mendoza-Mendoza E, Nunez-Briones A G, Garcia-Cerda L A, et al.  One-step  synthesis  of  ZnO  and  Ag/ZnO  heterostructures  and their photocatalytic activity. Ceram Int, 2018, 44(6): 6176 [23] Huang  J  F,  Xia  C  K,  Cao  L  Y,  et  al.  Facile  microwave hydrothermal  synthesis  of  zinc  oxide  one-dimensional nanostructure with three-dimensional morphology. Mater Sci Eng B, 2008, 150(3): 187 [24] Cao  G  X,  Hong  K  Q,  Wang  W  D,  et  al.  Fast  growth  of  well￾aligned ZnO nanowire arrays by a microwave heating method and their  photocatalytic  properties. Nanotechnology,  2016,  27(43): 435402 [25] Xu  A  J,  Feng  S  S,  Shen  S  J,  et  al.  Enhanced  visible  light￾responsive  photocatalytic  properties  of  Ag/BiPbO2Cl  nanosheet composites. Nanoscale Res Lett, 2018, 13: 292 [26] Baruah  S,  Dutta  J.  Hydrothermal  growth  of  ZnO  nanostructures. Sci Technol Adv Mater, 2009, 10(1): 013001 [27] 李    蕊等: 微波水热法快速合成氧化锌纳米棒及其光催化性能 · 83 ·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有