袁飞等:基于不同保温措施下的铁水包热状态模拟分析 ·39· 间时保温效果缓慢增加:绝热层厚度对下一周期铁 heat transfer phenomenon in steel making ladle.IS//Int,2012, 水最大温降改变量为3.4Kh1 52(9):1591 [10]Kabakov Z K,Pakholkova M A.Reducing the loss of heat from (4)空包时间对空包热状态影响存在一定影 steel in steel-pouring ladles.Metallurgist,2013,56(9-10):670 响.在加盖且无保温层(Y-0)的情况下,空包时间 [11]Wu P F,Xu A J,He D F,et al.Effect of insulating layers on 对铁水包热状态影响为最大.空包时间由5h缩短 the thermal behavior of ladles.J Unis Sci Technol Beijing,2012, 至3h后,减小下一周期铁水温降达2.2Kh1 34(5):563 (5)综合分析影响铁水包接铁前空包热状态的 (吴鹏飞,徐安军,贺东风,等.绝热层对钢包热行为的彩 响.北京科技大学学报,2012,34(5):563) 主要因素:保温措施(包盖和绝热层)和空包时间, [12]Kochubeev Y N,Kungurtsev VN,Mironova L V,et al.A tech- 各因素之间具有一定程度的相互影响.根据结果分 nology for production of composite refractory materials for the lin- 析来看,铁水包最为经济合理的保温措施为增设保 ing of steel ladles.Refract Ind Ceram,2005,46(2):81 温盖且纳米绝热层厚度在6mm左右.热状态Y-6- [13]Yuan L H,Yu J K,Liu S W,et al.Mathematical simulation of 3相比于N-0-5能有效减小下一周期铁水温降约 the effect of the covering agent and the insulation lining on the 3.9Kh- temperature drop of molten steel in ladle.Shandong Metall, 2014,36(5):36 (袁林华,于景坤,刘诗薇,等.覆盖剂和绝热层对钢包钢水 参考文献 温降影响的数值模拟.山东治金,2014,36(5):36) [14]Wu P F,Xu A J.Tian N Y,et al.Steel temperature compensa- [1]Tian H Y,Chen F R,Xie R J,et al.Finite element analysis of ting model with multi-factor coupling based on ladle thermal 100 t hot metal ladle in process of tipping.J Iron Steel Res Int, state.J Iron Steel Res Int,2012,19(5):9 2010,17(11):19 [15]Martynenko G M.Maltsev S M,Zabolotnyi S A.Ceramoconcrete [2]Zhang L Q,Tian N Y,Xu A J,et al.Research on realization of refractory and heat-insulating components in ferrous and nonfer- ladle multifunction.J Unie Sci Technol Beijing,2007,29(4): rous metallurgy.Refract Ind Ceram,2009,50(3):163 424 [16]He D F,Xu A J,Wu P F,et al.Ladle thermal tracking model (张龙强,田乃媛,徐安军,等.实现铁水包多功能技术的研 in a steelmaking workshop.J Univ Sci Technol Beijing,2011,33 究.北京科技大学学报,2007,29(4):424) (1):110 [3]Yin R Y.Metallurgical Process Engineering.2nd Ed.Beijing: (贺东风,徐安军,吴鹏飞,等。炼钢厂钢包热状态跟踪模 Metallurgical Industry Press,2009 型.北京科技大学学报,2011,33(1):110) (殷瑞钰.冶金流程工程学.2版.北京:治金工业出版社, [17]Fredman T P.Heat transfer in steelmaking ladle refractories and 2009) steel temperature.Scand J Metall,2000,29(6):232 [4]Qiu J,Tian N Y.Relative superiority research on the ironmaking/ [18]Yu J K,Han L.Preparation of nanoporous thermal insulating ma- steelmaking interface of the typical process section.J Unin Sci terials and their application as ladle linings.China Refract, Technol Beijing,2005,27(6):740 2014,23(4):13 (邱剑,田乃媛.典型流程区段炼铁炼钢界面的比较优势研 [19]Xia J L,Ahokainen T.Transient flow and heat transfer in a steel- 究.北京科技大学学报,2005,27(6):740) making ladle during the holding period.Metall Mater Trans B, [5]Wang J.Tang E.LiJ Y,et al.Analysis of energy efficiency eval- 2001,32(4):733 uation of the "hot metal transportation without relading"technolo- [20]Ma X D.Jiang QQ,Ma S,et al.Finite element computation on gy.Energy Metall Ind,2015,34(1):3 molten iron temperature drop of 320t torpedo ladle.J Mater Met- (王君,唐恩,李菊艳,等.“一罐到底”能效评估综合解析。 all,2015,14(1):14 治金能源,2015,34(1):3) (马学东,蒋全强,马硕,等.320t鱼雷罐铁水温降的有限元 [6] Huang B F,Tian N Y,Ma Z W,et al.Control model of multi- 计算.材料与冶金学报,2015,14(1):14) functional hot metal ladles.J Iron Steel Res Int,2016,23(12): [21]Li G F,Liu J,Jiang G Z,et al.Numerical simulation of temper- 1262 ature field and thermal stress field in the new type of ladle with [7] Huang B F,Tian N Y,Shi Z,et al.Material flow control technol- the nanometer adiabatic material.Ade Mech Eng,2015,7(4): ogy of ironmaking and steelmaking interface.Cent South Unis, 1 2014,21(9):3559 [22]Gleiser M,Wilflingseder F,Eder J.Concepts of refractory lining [8]Xu D Y,Liu C P,Yang D Z,et al.Analysis and evaluation of for pig-iron ladles.Refract Ind Ceram,2007,48(2):77 temperature value about molten iron.Energy Metall Ind,2007,26 [23]Liu S W,Yu J K,Mao F X.Thermal behavior modeling of inte- (3):7 rior refractory lining of torpedo-ladle by finite element method. (徐大勇,刘常鹏,杨大正,等.铁水温度价值的分析和评价 Adr Mater Res,2011,282-283:444 治金能源,2007,26(3):7) [24]Glaser B,Gomnerup M,Du S C.Thermal modelling of the ladle [9]Tripathi A,Saha J K,Singh J B,et al.Numerical simulation of preheating process.Steel Res Int,2011,82(12):1425袁 飞等: 基于不同保温措施下的铁水包热状态模拟分析 间时保温效果缓慢增加;绝热层厚度对下一周期铁 水最大温降改变量为 3郾 4 K·h - 1 . (4)空包时间对空包热状态影响存在一定影 响. 在加盖且无保温层(Y鄄鄄 0)的情况下,空包时间 对铁水包热状态影响为最大. 空包时间由 5 h 缩短 至 3 h 后,减小下一周期铁水温降达 2郾 2 K·h - 1 . (5)综合分析影响铁水包接铁前空包热状态的 主要因素:保温措施(包盖和绝热层) 和空包时间, 各因素之间具有一定程度的相互影响. 根据结果分 析来看,铁水包最为经济合理的保温措施为增设保 温盖且纳米绝热层厚度在 6 mm 左右. 热状态 Y鄄鄄6鄄鄄 3 相比于 N鄄鄄0鄄鄄5 能有效减小下一周期铁水温降约 3郾 9 K·h - 1 . 参 考 文 献 [1] Tian H Y, Chen F R, Xie R J, et al. Finite element analysis of 100 t hot metal ladle in process of tipping. J Iron Steel Res Int, 2010, 17(11): 19 [2] Zhang L Q, Tian N Y, Xu A J, et al. Research on realization of ladle multifunction. J Univ Sci Technol Beijing, 2007, 29 (4 ): 424 (张龙强, 田乃媛, 徐安军, 等. 实现铁水包多功能技术的研 究. 北京科技大学学报, 2007, 29(4): 424) [3] Yin R Y. Metallurgical Process Engineering. 2nd Ed. Beijing: Metallurgical Industry Press, 2009 (殷瑞钰. 冶金流程工程学. 2 版. 北京: 冶金工业出版社, 2009) [4] Qiu J, Tian N Y. Relative superiority research on the ironmaking / steelmaking interface of the typical process section. J Univ Sci Technol Beijing, 2005, 27(6): 740 (邱剑, 田乃媛. 典型流程区段炼铁炼钢界面的比较优势研 究. 北京科技大学学报, 2005, 27(6): 740) [5] Wang J, Tang E, Li J Y, et al. Analysis of energy efficiency eval鄄 uation of the “hot metal transportation without relading冶 technolo鄄 gy. Energy Metall Ind, 2015, 34(1): 3 (王君, 唐恩, 李菊艳, 等. “一罐到底冶 能效评估综合解析. 冶金能源, 2015, 34(1): 3) [6] Huang B F, Tian N Y, Ma Z W, et al. Control model of multi鄄 functional hot metal ladles. J Iron Steel Res Int, 2016, 23(12): 1262 [7] Huang B F, Tian N Y, Shi Z, et al. Material flow control technol鄄 ogy of ironmaking and steelmaking interface. J Cent South Univ, 2014, 21(9): 3559 [8] Xu D Y, Liu C P, Yang D Z, et al. Analysis and evaluation of temperature value about molten iron. Energy Metall Ind, 2007, 26 (3): 7 (徐大勇, 刘常鹏, 杨大正, 等. 铁水温度价值的分析和评价. 冶金能源, 2007, 26(3): 7) [9] Tripathi A, Saha J K, Singh J B, et al. Numerical simulation of heat transfer phenomenon in steel making ladle. ISIJ Int, 2012, 52(9): 1591 [10] Kabakov Z K, Pakholkova M A. Reducing the loss of heat from steel in steel鄄pouring ladles. Metallurgist, 2013, 56(9鄄10): 670 [11] Wu P F, Xu A J, He D F, et al. Effect of insulating layers on the thermal behavior of ladles. J Univ Sci Technol Beijing, 2012, 34(5): 563 (吴鹏飞, 徐安军, 贺东风, 等. 绝热层对钢包热行为的影 响. 北京科技大学学报, 2012, 34(5): 563) [12] Kochubeev Y N, Kungurtsev V N, Mironova L V, et al. A tech鄄 nology for production of composite refractory materials for the lin鄄 ing of steel ladles. Refract Ind Ceram, 2005, 46(2): 81 [13] Yuan L H, Yu J K, Liu S W, et al. Mathematical simulation of the effect of the covering agent and the insulation lining on the temperature drop of molten steel in ladle. Shandong Metall, 2014, 36(5): 36 (袁林华, 于景坤, 刘诗薇, 等. 覆盖剂和绝热层对钢包钢水 温降影响的数值模拟. 山东冶金, 2014, 36(5): 36) [14] Wu P F, Xu A J, Tian N Y, et al. Steel temperature compensa鄄 ting model with multi鄄factor coupling based on ladle thermal state. J Iron Steel Res Int, 2012, 19(5): 9 [15] Martynenko G M, Maltsev S M, Zabolotnyi S A. Ceramoconcrete refractory and heat鄄insulating components in ferrous and nonfer鄄 rous metallurgy. Refract Ind Ceram, 2009, 50(3): 163 [16] He D F, Xu A J, Wu P F, et al. Ladle thermal tracking model in a steelmaking workshop. J Univ Sci Technol Beijing, 2011, 33 (1): 110 (贺东风, 徐安军, 吴鹏飞, 等. 炼钢厂钢包热状态跟踪模 型. 北京科技大学学报, 2011, 33(1): 110) [17] Fredman T P. Heat transfer in steelmaking ladle refractories and steel temperature. Scand J Metall, 2000, 29(6): 232 [18] Yu J K, Han L. Preparation of nanoporous thermal insulating ma鄄 terials and their application as ladle linings. China Refract, 2014, 23(4): 13 [19] Xia J L, Ahokainen T. Transient flow and heat transfer in a steel鄄 making ladle during the holding period. Metall Mater Trans B, 2001, 32(4): 733 [20] Ma X D, Jiang Q Q, Ma S, et al. Finite element computation on molten iron temperature drop of 320t torpedo ladle. J Mater Met鄄 all, 2015, 14(1): 14 (马学东, 蒋全强, 马硕, 等. 320t 鱼雷罐铁水温降的有限元 计算. 材料与冶金学报, 2015, 14(1): 14) [21] Li G F, Liu J, Jiang G Z, et al. Numerical simulation of temper鄄 ature field and thermal stress field in the new type of ladle with the nanometer adiabatic material. Adv Mech Eng, 2015, 7(4): 1 [22] Gleiser M, Wilflingseder F, Eder J. Concepts of refractory lining for pig鄄iron ladles. Refract Ind Ceram, 2007, 48(2): 77 [23] Liu S W, Yu J K, Mao F X. Thermal behavior modeling of inte鄄 rior refractory lining of torpedo鄄ladle by finite element method. Adv Mater Res, 2011, 282鄄283: 444 [24] Glaser B, G觟rnerup M, Du S C. Thermal modelling of the ladle preheating process. Steel Res Int, 2011, 82(12):1425 ·39·