正在加载图片...
M.B. Ruggles-Wrenn, P D. Laffey /Composites Science and Technology 68(2008)2260-2266 [9] Lange FF, Tu wC, Evans AG Processing of damage-tolerant, oxidation-resistant [25] Choi SR, Bansal NP. Shear strength as a function of test rate for SiC BSAS sites by a precursor infiltration and pyrolysis method. ceramic matrix composite at elevated temperature. J Am 004:87(10:1912-8. xhibiting dissipative fracture behavior. Composites [26] Choi SR, Bansal NP, Calomino AM, Verrilli M]. Shear strength behavior of de fber wo ramic matrix composites at elevated temperatures. Ceram Trans 75-82. 2005;165:131-45 [11] Tu wC, Lange FF. Evans AG Concept for a nt ceramic composite [271 Choi SR, Kowalik RW, Al NP. Assessments of [12 Evans AG, Zok Fw. Review the physics and mechanics of fiber-reinforced Hio Ec SaCes em J. Zhu D, editors. rformance of engineering ceramics and composit [13] Kerans R]. Parthasarathy TA. Crack deflection in ceramic composites and fiber [28 Ruggles-Wrenn MB. Mall S Eber CA, Harlan LB. Effects of steam environment [14] Kerans RL, Hay RS, Parthasarathy TA, Cinibulk MK. Interface design for ceramic composites. J [15] Levi CG, Yang JY, Dalgleish B], Zok FW. Evans AG. Processing and performance all-oxide ceramic composite. J Am Ceram Soc 1998: 81: 2077-86 Compos Sci Technol 2007: 67: 1425-3 ior of an oxide-oxide ceramic composite at 1200C. Int j [171 Lu T. Crack branching in all-oxide ceramic composites. J Am Ceram Soc 6:79:266- [31 Ruggles-Wrenn MB, Siegert GT, Baek SS. Effects of el orous-matnx ceramic compo ith±45° fber orie 1200"C Compos Sci Technol 2008: 68: 1588-95. Developments in oxide fiber composites. J Am Ceram Soc [32] Jurf RA, Butner SC. Advances in oxide-oxide CMC.J Eng Gas Turb Power 006:89(11)3309-24 [20] Fang NJ. Chou Tw. Characterization of interlaminar shear strength of ceramic [33] Fujita H, Jefferson G, McMeeking RM, Zok FW. Mullite/alumina mixtures for matrix composites. J Am Ceram Soc 1993: 76(10): 2539-48. use as porous matrices in oxide fiber composites. J Am Ceram Soc [21 Brondsted P, Heredia FE, Evans AG. ne shear properties of 2-D ceramic composites.J Am Ceram Soc 1994: 77(10): 2569-74 [34 Fujita H, Levi CG, Zok Fw. Jefferson G. Controlling mechanical properties of ngth of continuous fiber ceramic ares via precursor-derived alumina. J Am Ceram ditors. Thermal and mechanical test methods and behavior of continuous [35] Tai WP, Watanabe T. High-temperature stability of alumina in argon and [23] Unal O, Bansal NP In-plane and interlaminar shear strength of a unidirectional [36] Kronenberg AK, Castaing J Mitchell TE, Kirby SH Hydrogen defects in -Al2O3 fiber-reinforced Celsian matr and water weakening of sapphire and alumina ceramics between 600"C and 002;28:527-40 1000.C-L Infrared characterization of defects. Acta mater 2000: 48: 1481-94. 24] Choi SR, Bansal NP. Interlaminar tension/ shear properties and stress rupture in near of various continuous fiber-reinforced ceramic matrix composites Ceram trans2006;175:119-34[9] Lange FF, Tu WC, Evans AG. Processing of damage-tolerant, oxidation-resistant ceramic matrix composites by a precursor infiltration and pyrolysis method. Mater Sci Eng A 1995;A195:145–50. [10] Mouchon E, Colomban P. Oxide ceramic matrix/oxide fiber woven fabric composites exhibiting dissipative fracture behavior. Composites 1995;26:175–82. [11] Tu WC, Lange FF, Evans AG. Concept for a damage-tolerant ceramic composite with strong interfaces. J Am Ceram Soc 1996;79(2):417–24. [12] Evans AG, Zok FW. Review the physics and mechanics of fiber-reinforced brittle matrix composites. J Mater Sci 1994;29:3857–96. [13] Kerans RJ, Parthasarathy TA. Crack deflection in ceramic composites and fiber coating design criteria. Composites: Part A 1999;30:521–4. [14] Kerans RJ, Hay RS, Parthasarathy TA, Cinibulk MK. Interface design for oxidation-resistant ceramic composites. J Am Ceram Soc 2002;85(11):2599–632. [15] Levi CG, Yang JY, Dalgleish BJ, Zok FW, Evans AG. Processing and performance of an all-oxide ceramic composite. J Am Ceram Soc 1998;81:2077–86. [16] Hegedus AG. Ceramic bodies of controlled porosity and process for making same. US Patent No. 5 0177 522, May 21, 1991. [17] Lu T. Crack branching in all-oxide ceramic composites. J Am Ceram Soc 1996;79:266–74. [18] Zok FW, Levi CG. Mechanical properties of porous-matrix ceramic composites. Adv Eng Mater 2001;3(1-2):15–23. [19] Zok F. Developments in oxide fiber composites. J Am Ceram Soc 2006;89(11):3309–24. [20] Fang NJ, Chou TW. Characterization of interlaminar shear strength of ceramic matrix composites. J Am Ceram Soc 1993;76(10):2539–48. [21] Brondsted P, Heredia FE, Evans AG. In-plane shear properties of 2-D ceramic composites. J Am Ceram Soc 1994;77(10):2569–74. [22] Lara-Curzio E, Ferber MK. Shear strength of continuous fiber ceramic composites. In: Jenkins M, Gonczy S, Lara-Curzio E, Ashbaugh N, Zawada L, editors. Thermal and mechanical test methods and behavior of continuous fiber ceramic composites. ASTM STP 1309; 2000. [23] Unal O, Bansal NP. In-plane and interlaminar shear strength of a unidirectional Hi-Nicalon fiber-reinforced Celsian matrix composite. Ceram Int 2002;28:527–40. [24] Choi SR, Bansal NP. Interlaminar tension/shear properties and stress rupture in shear of various continuous fiber-reinforced ceramic matrix composites. Ceram Trans 2006;175:119–34. [25] Choi SR, Bansal NP. Shear strength as a function of test rate for SiCf/BSAS ceramic matrix composite at elevated temperature. J Am Ceram Soc 2004;87(10):1912–8. [26] Choi SR, Bansal NP, Calomino AM, Verrilli MJ. Shear strength behavior of ceramic matrix composites at elevated temperatures. Ceram Trans 2005;165:131–45. [27] Choi SR, Kowalik RW, Alexander DJ, Bansal NP. Assessments of life limiting behavior in interlaminar shear for Hi–NiC SiC/SiC ceramic matrix composite at elevated temperature. In: Lara-Curzio E, Salem J, Zhu D, editors. Mechanical properties and performance of engineering ceramics and composites III. John Wiley & Sons, Inc.; 2007. p. 179–89. [28] Ruggles-Wrenn MB, Mall S, Eber CA, Harlan LB. Effects of steam environment on high-temperature mechanical behavior of NextelTM 720/alumina (N720/A) continuous fiber ceramic composite. Composites A 2006;37(11):2029–40. [29] Mehrman JM, Ruggles-Wrenn MB, Baek SS. Influence of hold times on the elevated-temperature fatigue behavior of an oxide–oxide ceramic composite in air and in steam environment. Compos Sci Technol 2007;67:1425–38. [30] Ruggles-Wrenn MB, Hetrick G, Baek SS. Effects of frequency and environment on fatigue behavior of an oxide–oxide ceramic composite at 1200 C. Int J Fatigue 2008;30:502–16. [31] Ruggles-Wrenn MB, Siegert GT, Baek SS. Effects of environment on creep behavior of an oxide–oxide ceramic composite with ±45 fiber orientation at 1200 C. Compos Sci Technol 2008;68:1588–95. [32] Jurf RA, Butner SC. Advances in oxide–oxide CMC. J Eng Gas Turb Power 1999;122(2):202–5. [33] Fujita H, Jefferson G, McMeeking RM, Zok FW. Mullite/alumina mixtures for use as porous matrices in oxide fiber composites. J Am Ceram Soc 2004;87(2):261–7. [34] Fujita H, Levi CG, Zok FW, Jefferson G. Controlling mechanical properties of porous mullite/alumina mixtures via precursor-derived alumina. J Am Ceram Soc 2005;88(2):367–75. [35] Tai WP, Watanabe T. High-temperature stability of alumina in argon and argon/water-vapor environments. J Am Ceram Soc 1999;82(1):245–8. [36] Kronenberg AK, Castaing J, Mitchell TE, Kirby SH. Hydrogen defects in a-Al2O3 and water weakening of sapphire and alumina ceramics between 600 C and 1000 C – I. Infrared characterization of defects. Acta Mater 2000;48:1481–94. 2266 M.B. Ruggles-Wrenn, P.D. Laffey / Composites Science and Technology 68 (2008) 2260–2266
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有