正在加载图片...
Availableonlineatwww.sciencedirect.com SCIENGE DIRECT PROGRESS IN ENERGYAND COMBUSTION SCIENC ELSEVIER rogress in Energy and Combustion Science 30(2004)545-672 www.elsevier.com/locate/pecs Pulse detonation propulsion: challenges, current status and future perspective G.D. Roy. S.M. Frolov, A.A. Borisov, D W. Netzer Ofice of Naval Research, Ballston Centre Tower 1, Arlington, VA 22217, US N.N. Semenov Institute of Chemical Physics, Moscow, Russia Naval Postgraduate School, Monterey, CA, USA Received I April 2003: accepted 11 May 2004 Available online 27 September 2004 Abstract The paper is focused on recent accomplishments in basic and applied research on pulse detonation engines(PDE)and various PDE design concepts. Current understanding of gas and spray detonations, thermodynamic grounds for detonation-based propulsion, principles of practical implementation of the detonation-based thermodynamic cycle, and various operational constraints of PDEs are discussed c 2004 Published by Elsevier Ltd Keywords: Gaseous and heterogeneous detonation; Pulse detonation engine; Design concepts; Propulsion: Thrust performance Contents 2. Fundam 2.1. Historical review ...549 2.2. Gaseous detonations 552 2. 1. General propertie 2. 2. Detonability limits 559 2. 23. Direct initiation 2.2.5. Nonideal detonations 2.2.6. Transient deflagration and ddt 2.3. Heterogeneous detonations 2.3.1. General properties 2.3. 2. Detonability limits 2.3.3. Direct initiation 594 2.3. 4. Detonation transition 3.5. Nonideal detonations 2.3.6. Transient deflagration and dDt Abbreviations: Al, air inlet; BR, blockage ratio: CJ, Cha cross-section; DC, detonation chamber; dDt, deflagration to detonation transition; FAM, fuel-air mixture(-); HE, hi drogen peroxide; IPN, isopropyl nitrate: IR, infra red; NM Orescence: RFBR. Russian Foundation for Basic researc ean diameter: SwACER, shock wave amplification through coherent release: TEP, thermochemical equilibriu turbojet engine: TNT, trinitrotoluene: ZND, Zel'dovich- Neumann-Doering: 1D, one-dimensional: 2D, two-dimens 0360-1285/S- see front matter o 2004 Published by Elsevier Ltd. doi:10.1016 -pecs.2004.05001Pulse detonation propulsion: challenges, current status, and future perspective G.D. Roya,*, S.M. Frolovb , A.A. Borisovb , D.W. Netzerc a Office of Naval Research, Ballston Centre Tower 1, Arlington, VA 22217, USA b N.N. Semenov Institute of Chemical Physics, Moscow, Russia c Naval Postgraduate School, Monterey, CA, USA Received 1 April 2003; accepted 11 May 2004 Available online 27 September 2004 Abstract The paper is focused on recent accomplishments in basic and applied research on pulse detonation engines (PDE) and various PDE design concepts. Current understanding of gas and sprary detonations, thermodynamic grounds for detonation-based propulsion, principles of practical implementation of the detonation-based thermodynamic cycle, and various operational constraints of PDEs are discussed. q 2004 Published by Elsevier Ltd. Keywords: Gaseous and heterogeneous detonation; Pulse detonation engine; Design concepts; Propulsion; Thrust performance Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546 2. Fundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 2.1. Historical review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 2.2. Gaseous detonations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 2.2.1. General properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 2.2.2. Detonability limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559 2.2.3. Direct initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567 2.2.4. Detonation transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573 2.2.5. Nonideal detonations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580 2.2.6. Transient deflagration and DDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584 2.3. Heterogeneous detonations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588 2.3.1. General properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588 2.3.2. Detonability limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591 2.3.3. Direct initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594 2.3.4. Detonation transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598 2.3.5. Nonideal detonations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599 2.3.6. Transient deflagration and DDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 0360-1285/$ - see front matter q 2004 Published by Elsevier Ltd. doi:10.1016/j.pecs.2004.05.001 Progress in Energy and Combustion Science 30 (2004) 545–672 www.elsevier.com/locate/pecs * Corresponding author. Tel.: þ1-703-696-4406. Abbreviations: AI, air inlet; BR, blockage ratio; CJ, Chapman-Jouguet; CS, cross-section; DC, detonation chamber; DDT, deflagration to detonation transition; FAM, fuel—air mixture (2); HE, high explosive; HP, hydrogen peroxide; IPN, isopropyl nitrate; IR, infra red; NM, nitromethane; ON, octane number; PDE, pulse detonation engine; PDRE, pulse detonation rocket engine; PLIF, particle laser induced fluorescence; RFBR, Russian Foundation for Basic Research; SMD, sauter mean diameter; SWACER, shock wave amplification through coherent energy release; TEP, thermochemical equilibrium program; TJE, turbojet engine; TNT, trinitrotoluene; ZND, Zel’dovich— Neumann—Doering; 1D, one-dimensional; 2D, two-dimensional; 3D, three-dimensional
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有