证明:令z ,则x∈[-1,1]变成z∈[-丌,丌 x 令F(z)=f(x)=∫ 则 lz F(x+2丌)=f( (z+2丌 f(-+21) f()=F(z) 所以F()是以2π为周期的周期函数,且它满足收敛 定理条件,将它展成傅里叶级数 F(2)=0+2(an cosnz+bn sin nz n=1 (在F()的连续点处) HIGH EDUCATION PRESS 机动目录上页下页返回结束证明: 令 l x z = , 则 令 ( ) , lz = f 则 ) ( 2 ) ( 2 ) ( + + = l z F z f ( 2l ) lz = f + ( ) lz = f 所以 且它满足收敛 定理条件, 将它展成傅里叶级数: ( 在 F(z) 的连续点处 ) f (x) 变成 是以 2 为周期的周期函数 , 机动 目录 上页 下页 返回 结束