正在加载图片...
第2期 林柏仲,等:生物黏合水凝胶研究进展 chitosan through the michael reaction [I. Journal of Materials Chemistry B, 2016, 4(33):5585-5592 [91] LI Y, MENG H, LIU Y, et al. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering [].The Scientific World Journal, 2015, 2015: 685690 [92 SUNDARAM MN. SEL VAPRITHIVIRAJ V. SURESH M K. et al. Bioadhesive, hemostatic and antibacterial in situ chitin-fibrin nanocomposite gel for controlling bleeding and preventing infections at mediastinum [J]. ACS Sustainable Chemistry Engineering,2018,6:7826-7840 [93] ZHANG Y, HEHER P, HILBORN J, et al. Hyaluronic acid-fibrin interpenetrating double network hydrogel prepared in situ by orthogonal disulfide cross- linking reaction for biomedical applications [J]. Acta Biomaterialia, 2016, 38: 23-32 [94] SYLMAN J L, DAALKHAUJAV U, YING Z, et al. Differential roles for the coagulation factors XI and Xll in regulating the physical biology of fibrin [J]. Annals of Biomedical Engineering, 2017, 45(5):1328-1340 [95] PARRY D A, SQUIRE J M. Fibrous Proteins: Structures and Mechanisms [M] Germany, Cham: Springer, 2017 [ 96] HINO M, ISHIKO O, HONDA K L, et al. Transmission of symptomatic parvovirus B19 infection by fibrin sealant used during surgery [JI. British Journal of Haematology, 2015, 108(1): 194-195 [97] MASAFUMI K, MAKOTO S, MASAZUMI W, et al. Frequency of transmission of human parvovirus B19 infection by fibrin sealant used during thoracic surgery [J]. Annals of Thoracic Surgery, 2002, 73(4): 1098-1100 [ 98] SCHEK R, MICHALEK A, IATRIDIS J. Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair [J]. European Cells Materials, 2011, 21: 373-383 [99] CRUZ M A, MCANANY S, GUPTA N, et al. Structural and chemical modification to improve adhesive and material properties of fibrin-genipin for repair of annulus fibrosus defects in intervertebral discs []. Journal of Biomechanical Engineering, 2017 139(8):084501. [100] GAO Y, HAN Y, CUI M, et al. ZnO nanoparticles as an antimicrobial tissue adhesive for skin wound closure []. Journal of Materials Chemistry B, 2017, 5(23): 4535-4541 [101] STEFANO V D, WAGNER W, MUSCATO O. Optimization of amino group density on surfaces of titanium dioxide nanoparticles covalently bonded to a silicone substrate for antibacterial and cell adhesion activities [J] Journal of Biomedical Materials Research Part a,2006,76(1):95-10 [102] MAO C, XIANG Y, LIU X, et al. Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures []. ACS Nano, 2017, 11(9):9010-9021 [103] HOQUE J, PRAKASH R G, PARAMANANDHAM K, et al. Biocompatible injectable hydrogel with potent wound healing and antibacterial properties [l Molecular Pharmaceutics, 2017, 14(4):1218-1230. [104] GAO F, LIU Y, HE Y, et al. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis [] Matrix Biology Journal of the International Society for Matrix Biology, 2010, 29(2):107-116 [105] PHUC D H, HIEP N T, CHAU D N P, et al. Fabrication of hyaluronan-poly(vinylphosphonic acid )-chitosan hydrogel for wound healing application [J]. International Journal of Polymer Science, 2016, 2016: 6723716. [106] MIHIC A, CUI Z, WU J, et al. A conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct []. Circulation, 2015, 132(8):772-784 [107] AHADIAN S, YAMADA S, RAMON-AZCON J, et al. Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies [J]. Acta Biomaterialia, 2016, 31: 134-143 [108] SUN H, TANG J, MOU Y, et al. Carbon nanotube- composite hydrogels promote intercalated disc assembly in engineered cardiac tissues through B1-integrin mediated FAK and rhoA pathway [J]. Acta Biomaterialia, 2017, 48:88 [109] LIU X, PARK S, WALETZKI B E, et al. Functionalized carbon nanotube and graphene oxide embedded electrically conductive hydrogel synergistically stimulates nerve cell differentiation [I. ACS Applied Materials& Interfaces, 2017, 9( 14677 [110] FERRIS C J, PANHUIS I H M. Conducting bio-materials based on gellan gum hydrogels []. Soft Matter, 2009, 5(18):3430- [111] CHUANG W J, CHIU W Y, TAI H J. Temperature-dependent conductive composites: Poly(N-isopropylacrylamide-co-N-methyl acrylamide)and carbon black composite films [J]. Joumal of Materials Chemistry, 2012, 22(38):20311-20318 [112] VOZZI G, de MARIA C, MONTEMURRO F, et al. Fabrication and characterization of gelatin/carbon black-based scaffolds for neural tissue engineering applications [J]. Materials Performance and Characterization, 2019, 8(1):301-31 [113] LIANG S, ZHANG Y, WANG H, et al. Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches [J] Advanced Materials, 2018, 30(23): 1704235 [114] GAHARWAR A K, PEPPAS N A, ALI K. Nanocomposite hydrogels for biomedical applications [J]. Biotechnology and Bioengineering, 2014, 111(3):441-45chitosan through the michael reaction [J]. Journal of Materials Chemistry B,2016,4(33):5585-5592. LI  Y,  MENG  H,  LIU  Y, et al.  Fibrin  gel  as  an  injectable  biodegradable  scaffold  and  cell  carrier  for  tissue  engineering [J]. The Scientific World Journal,2015,2015:685690. [  91  ] SUNDARAM M N, SELVAPRITHIVIRAJ V, SURESH M K, et al. Bioadhesive, hemostatic and antibacterial in situ chitin-fibrin nanocomposite  gel  for  controlling  bleeding  and  preventing  infections  at  mediastinum [J]. ACS  Sustainable  Chemistry  & Engineering,2018,6:7826-7840. [  92  ] ZHANG  Y,  HEHER  P,  HILBORN  J, et al.  Hyaluronic  acid-fibrin  interpenetrating  double  network  hydrogel  prepared in situ by orthogonal disulfide cross-linking reaction for biomedical applications [J]. Acta Biomaterialia,2016,38:23-32. [  93  ] SYLMAN  J  L,  DAALKHAIJAV  U,  YING  Z, et al.  Differential  roles  for  the  coagulation  factors  XI  and  XII  in  regulating  the physical biology of fibrin [J]. Annals of Biomedical Engineering,2017,45(5):1328-1340. [  94  ] [  95  ] PARRY D A, SQUIRE J M. Fibrous Proteins:Structures and Mechanisms[M] Germany, Cham:Springer, 2017. HINO  M,  ISHIKO  O,  HONDA  K  I, et al.  Transmission  of  symptomatic  parvovirus  B19  infection  by  fibrin  sealant  used  during surgery [J]. British Journal of Haematology,2015,108(1):194-195. [  96  ] MASAFUMI  K,  MAKOTO  S,  MASAZUMI  W, et al.  Frequency  of  transmission  of  human  parvovirus  B19  infection  by  fibrin sealant used during thoracic surgery [J]. Annals of Thoracic Surgery,2002,73(4):1098-1100. [  97  ] SCHEK R, MICHALEK A, IATRIDIS J. Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair [J]. European Cells & Materials,2011,21:373-383. [  98  ] CRUZ M A, MCANANY S, GUPTA N, et al. Structural and chemical modification to improve adhesive and material properties of fibrin-genipin  for  repair  of  annulus  fibrosus  defects  in  intervertebral  discs [J]. Journal  of  Biomechanical  Engineering,2017, 139(8):084501. [  99  ] GAO  Y,  HAN  Y,  CUI  M, et al.  ZnO  nanoparticles  as  an  antimicrobial  tissue  adhesive  for  skin  wound  closure [J]. Journal  of Materials Chemistry B,2017,5(23):4535-4541. [100] STEFANO V D, WAGNER W, MUSCATO O. Optimization of amino group density on surfaces of titanium dioxide nanoparticles covalently bonded to a silicone substrate for antibacterial and cell adhesion activities [J]. Journal of Biomedical Materials Research Part A,2006,76(1):95-101. [101] MAO C, XIANG Y, LIU X, et al. Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures [J]. ACS Nano,2017,11(9):9010-9021. [102] HOQUE  J,  PRAKASH  R  G,  PARAMANANDHAM  K, et al.  Biocompatible  injectable  hydrogel  with  potent  wound  healing  and antibacterial properties [J]. Molecular Pharmaceutics,2017,14(4):1218-1230. [103] GAO F, LIU Y, HE Y, et al. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis [J]. Matrix Biology Journal of the International Society for Matrix Biology,2010,29(2):107-116. [104] PHUC D H, HIEP N T, CHAU D N P, et al. Fabrication of hyaluronan-poly(vinylphosphonic acid)-chitosan hydrogel for wound healing application [J]. International Journal of Polymer Science,2016,2016:6723716. [105] MIHIC A, CUI Z, WU J, et al. A conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct [J]. Circulation,2015,132(8):772-784. [106] AHADIAN  S,  YAMADA  S,  RAMÓN-AZCÓN  J, et al.  Hybrid  hydrogel-aligned  carbon  nanotube  scaffolds  to  enhance  cardiac differentiation of embryoid bodies [J]. Acta Biomaterialia,2016,31:134-143. [107] SUN H, TANG J, MOU Y, et al. Carbon nanotube-composite hydrogels promote intercalated disc assembly in engineered cardiac tissues through β1-integrin mediated FAK and RhoA pathway [J]. Acta Biomaterialia,2017,48:88-99. [108] LIU  X,  PARK  S,  WALETZKI  B  E, et al.  Functionalized  carbon  nanotube  and  graphene  oxide  embedded  electrically  conductive hydrogel  synergistically  stimulates  nerve  cell  differentiation [J]. ACS  Applied  Materials  &  Interfaces,2017,9(17):14677- 14690. [109] FERRIS C J, PANHUIS I H M. Conducting bio-materials based on gellan gum hydrogels [J]. Soft Matter,2009,5(18):3430- 3437. [110] CHUANG W J, CHIU W Y, TAI H J. Temperature-dependent conductive composites: Poly(N-isopropylacrylamide-co-N-methylol acrylamide) and carbon black composite films [J]. Journal of Materials Chemistry,2012,22(38):20311-20318. [111] VOZZI  G,  de  MARIA  C,  MONTEMURRO  F, et al.  Fabrication  and  characterization  of  gelatin/carbon  black-based  scaffolds  for neural tissue engineering applications [J]. Materials Performance and Characterization,2019,8(1):301-315. [112] LIANG S, ZHANG Y, WANG H, et al. Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches [J]. Advanced Materials,2018,30(23):1704235. [113] GAHARWAR  A  K,  PEPPAS  N  A,  ALI  K.  Nanocomposite  hydrogels  for  biomedical  applications [J]. Biotechnology  and Bioengineering,2014,111(3):441-453. [114] 第 2 期 林柏仲,等:生物黏合水凝胶研究进展 139
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有