正在加载图片...
梁江涛等:1300MPa级Nb微合金化DH钢的组织性能 393· in the ferrite volume fraction,the yield strength and tensile strength increase,whereas,the elongation rate first increase and then decrease.The decrease in the soft-phase ferrite volume fraction and increase in the volume fraction of the hard martensite phase led to an increase in yield strength and tensile strength.Compared with tempered martensite,quenched martensite could improve the strength more significantly.The retained austenite transformed in the tensile process was the main cause of the change in elongation.The remarkable banded structure in the microstructure will cause a significant decrease in elongation after necking.The analysis of the strain hardening behavior show that the strain hardening rate decrease with the increase in the true strain.When the true strain was greater than 2%,the strain hardening rate of the steels followed the order:DH1>DH2>DH3;this trend was mainly influenced by the ferrite volume fraction.The strain hardening rate of DH2 was higher than those of DHI and DH3 when the true strain was greater than 5.73%,which was mainly related to the more significant transformation-induced plasticity (TRIP)effect in the DH2.In addition to the retained austenite volume fraction,the carbon content in the retained austenite also had a significant effect on the TRIP effect.The high proportion of the hard-phase martensite,appropriate proportion of the soft-ductile-phase ferrite,and retained austenite contributed to the DH2 steel having the greatest tensile strength and elongation(13.17 GPa%),moreover,the yield strength was 880 MPa,tensile strength was 1497 MPa,uniform elongation was 6.71%,total elongation was 8.8%,elongation after necking was 2.09%,and yield ratio was 0.59. KEY WORDS ultra-high-strength DH steel;martensite;ferrite;retained austenite;mechanical properties;strain hardening behavior 随着全球汽车工业的发展,高安全性能和低 后层流冷却到650℃,在箱式炉中模拟卷曲1h,随 能耗成为各大汽车厂商在汽车设计中追求的目 炉冷却到室温.冷轧:在冷轧机上将实验钢轧到 标,这就对汽车的选材提出了更高的要求,DH钢 1.4mm,总的压下量为65%.连续退火:在日本 (增强成形性双相钢)作为一种强度和塑性兼具的 CCT-AY-Ⅱ型钢板连续退火热模拟实验机上模 超高强汽车板拥有广阔的应用前景-)传统的铁 拟工业连续退火过程,试样尺寸为220mm×7mm× 素体马氏体DP钢(双相钢)的显微组织为铁素体 1.4mm 和马氏体,软相铁素体保证了塑性,硬相马氏体保 表1实验钢的主要化学成分(质量分数) 证了强度,但是目前铁素体马氏体DP钢的塑性偏 Table 1 Main chemical composition of the tested steel 低成为制约其广泛应用的关键因素.与传统的铁 免 C Si Mn Cr Nb Fe 素体马氏体DP钢相比,DH钢在组织中引人了一 0.17-0.200.13-0.151.90-2.200.08-0.120.03-0.05Bal. 定量的亚稳相残留奥氏体,残留奥氏体在变形过 程中发生T℉IP效应(相变诱导塑性),对强度和塑 根据YBT5127一1993(钢的临界点测定方 性的提升同时做出贡献,特别是对超高强汽车板 法),用切线法测得实验钢的相变点.图1和图2 的成型能力的提升起到显著的作用60 为通过DL805A型膨胀仪测得的热膨胀-温度曲 在本试验中采用一种相对简单的的C-Si-Mn 线,升温段加热速度选择0.05℃s,测得TA 系成分设计,Mn元素和Cr元素的加入可以提高 TAc3(TAel为加热时开始形成奥氏体的温度; 实验钢的淬透性,Nb元素的加入可以达到细化原 TA3为加热时全部形成奥氏体的温度)分别为 始奥氏体晶粒的目的.本研究的重点是深入探讨 672和805℃,如图1所示.以0.05℃·s加热到 各相构成(相状态、相比例和相分布)对1300MPa 875℃,保温15min,然后以40℃s1的冷速冷却, 级DH钢力学性能和加工硬化行为等的影响,为汽 得到TMs和TMr(TMs和TMr分别为马氏体开始相变 车工业中超高强DH钢的组织设计提供参考 点和马氏体结束相变点)分别为402和220℃,如 1实验材料及方法 图2所示.由此确定实验钢两相区保温温度分别 为740、760和780℃,等温温度为240℃,得到三 实验钢通过50kg真空感应熔炼炉冶炼,主要 种不同相构成(相比例、相状态和相分布)的超高 化学成分如表1所示.实验钢的加工步骤为:锻 强度DH钢,分别命名为DHI、DH2和DH3.具体 造一热轧一酸洗一冷轧一连续退火.锻造:在 的热处理工艺为:以7.4℃·s1加热到150℃.然后 1100~1250℃锻造成35mm×100mm×100mm的 以2.6℃·s1分别加热到两相区,保温温度分别为 锻坯.热轧:锻坯在加热炉中加热到1200℃,保温 740/760/780℃,保温时间为100s,然后以4℃s 2h,开轧温度为1150℃,终轧温度为850℃,粗轧 缓冷到640℃,接下来以40℃s1快冷到240℃, 和精轧共6道次,实验钢从35mm轧到4mm,然 保温368s,最后以5℃s1冷却到室温.in the ferrite volume fraction, the yield strength and tensile strength increase, whereas, the elongation rate first increase and then decrease. The decrease in the soft-phase ferrite volume fraction and increase in the volume fraction of the hard martensite phase led to an increase in yield strength and tensile strength. Compared with tempered martensite, quenched martensite could improve the strength more significantly. The retained austenite transformed in the tensile process was the main cause of the change in elongation. The remarkable banded structure in the microstructure will cause a significant decrease in elongation after necking. The analysis of the strain hardening behavior show that the strain hardening rate decrease with the increase in the true strain. When the true strain was greater than 2%, the strain hardening rate of the steels followed the order: DH1 > DH2 > DH3; this trend was mainly influenced by the ferrite volume fraction. The strain hardening rate of DH2 was higher than those of DH1 and DH3 when the true strain was greater than 5.73%, which was mainly related to the more significant transformation-induced plasticity (TRIP) effect in the DH2. In addition to the retained austenite volume fraction, the carbon content in the retained austenite also had a significant effect on the TRIP effect. The high proportion of the hard-phase martensite, appropriate proportion of the soft-ductile-phase ferrite, and retained austenite contributed to the DH2 steel having the greatest tensile strength and elongation (13.17 GPa·%); moreover, the yield strength was 880 MPa, tensile strength was 1497 MPa, uniform elongation was 6.71%, total elongation was 8.8%, elongation after necking was 2.09%, and yield ratio was 0.59. KEY WORDS    ultra-high-strength DH steel;martensite;ferrite;retained austenite;mechanical properties;strain hardening behavior 随着全球汽车工业的发展,高安全性能和低 能耗成为各大汽车厂商在汽车设计中追求的目 标,这就对汽车的选材提出了更高的要求,DH 钢 (增强成形性双相钢)作为一种强度和塑性兼具的 超高强汽车板拥有广阔的应用前景[1–5] . 传统的铁 素体马氏体 DP 钢(双相钢)的显微组织为铁素体 和马氏体,软相铁素体保证了塑性,硬相马氏体保 证了强度,但是目前铁素体马氏体 DP 钢的塑性偏 低成为制约其广泛应用的关键因素. 与传统的铁 素体马氏体 DP 钢相比,DH 钢在组织中引入了一 定量的亚稳相残留奥氏体,残留奥氏体在变形过 程中发生 TRIP 效应 (相变诱导塑性),对强度和塑 性的提升同时做出贡献,特别是对超高强汽车板 的成型能力的提升起到显著的作用[6–10] . 在本试验中采用一种相对简单的的 C–Si–Mn 系成分设计,Mn 元素和 Cr 元素的加入可以提高 实验钢的淬透性,Nb 元素的加入可以达到细化原 始奥氏体晶粒的目的. 本研究的重点是深入探讨 各相构成(相状态、相比例和相分布)对 1300 MPa 级 DH 钢力学性能和加工硬化行为等的影响,为汽 车工业中超高强 DH 钢的组织设计提供参考. 1    实验材料及方法 实验钢通过 50 kg 真空感应熔炼炉冶炼,主要 化学成分如表 1 所示. 实验钢的加工步骤为:锻 造—热轧—酸洗—冷轧—连续退火. 锻造 :在 1100~1250 ℃ 锻造成 35 mm×100 mm×100 mm 的 锻坯. 热轧:锻坯在加热炉中加热到 1200 ℃,保温 2 h,开轧温度为 1150 ℃,终轧温度为 850 ℃,粗轧 和精轧共 6 道次,实验钢从 35 mm 轧到 4 mm,然 后层流冷却到 650 ℃,在箱式炉中模拟卷曲 1 h,随 炉冷却到室温. 冷轧:在冷轧机上将实验钢轧到 1.4 mm,总的压下量为 65%. 连续退火 :在日本 CCT-AY-Ⅱ型钢板连续退火热模拟实验机上模 拟工业连续退火过程,试样尺寸为 220 mm×7 mm× 1.4 mm. 表 1 实验钢的主要化学成分 (质量分数) Table 1 Main chemical composition of the tested steel % C Si Mn Cr Nb Fe 0.17–0.20 0.13–0.15 1.90–2.20 0.08–0.12 0.03–0.05 Bal. 根据 YBT 5127—1993 (钢的临界点测定方 法),用切线法测得实验钢的相变点. 图 1 和图 2 为通过 DIL 805A 型膨胀仪测得的热膨胀–温度曲 线 ,升温段加热速度选择 0.05 ℃·s–1,测得 TAc1、 TAc3( TAc1 为 加 热 时 开 始 形 成 奥 氏 体 的 温 度 ; TAc3 为加热时全部形成奥氏体的温度 )分别 为 672 和 805 ℃,如图 1 所示. 以 0.05 ℃·s– 1 加热到 875 ℃,保温 15 min,然后以 40 ℃·s–1 的冷速冷却, 得到 TMs 和 TMf(TMs 和 TMf 分别为马氏体开始相变 点和马氏体结束相变点)分别为 402 和 220 ℃,如 图 2 所示. 由此确定实验钢两相区保温温度分别 为 740、760 和 780 ℃,等温温度为 240 ℃,得到三 种不同相构成(相比例、相状态和相分布)的超高 强度 DH 钢,分别命名为 DH1、DH2 和 DH3. 具体 的热处理工艺为:以 7.4 ℃·s–1 加热到 150 ℃,然后 以 2.6 ℃·s– 1 分别加热到两相区,保温温度分别为 740/760/780 ℃,保温时间为 100 s,然后以 4 ℃·s–1 缓冷到 640 ℃,接下来以 40 ℃·s– 1 快冷到 240 ℃ , 保温 368 s,最后以 5 ℃·s–1 冷却到室温. 梁江涛等: 1300 MPa 级 Nb 微合金化 DH 钢的组织性能 · 393 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有