正在加载图片...
工程科学学报.第43卷.第8期:1024-1031.2021年8月 Chinese Journal of Engineering,Vol.43,No.8:1024-1031,August 2021 https://doi.org/10.13374/j.issn2095-9389.2020.12.03.004;http://cje.ustb.edu.cn 钙钛矿型锂离子固体电解质Li2xySr1-xTi1yNb,O3的性能 卢佳垚2),厉英,2)区,倪培远2),唐甜甜1,2 1)东北大学治金学院.沈阳1108192)辽宁省治金传感器材料及技术重点实验室,沈阳110819 ☒通信作者,E-mail:liying@mail.neu.edu.cn 摘要采用高温固相法成功制备了Li2Sr1-Ti1-Nb,03(=34,=0.25,0.5,0.6,0.7,0.75,0.8)锂离子固体电解质,并通过 X射线衍射(XRD)、扫描电子显微镜(SEM)、交流阻抗图谱、恒电位极化等分别研究了各个组分的晶体结构、微观形貌、离 子电导率和电子电导率.XRD显示当y≤0.70时,材料为立方钙钛矿型结构,几乎没有杂质相生成.SEM表明随着掺杂含量 的增加材料的晶粒尺寸逐渐增大.Li.3sSro.4sTio.3Nbo.703锂离子固体电解质有着高离子电导率,为3.62×105Scm,其电子电 导率为2.55×10°Scm,活化能仅为0.29eV.使用以Lo.3sSro.4sTo.Nbo.03为隔膜的LiFePO.,Li半电池经过100圈循环后, 放电比容量仍有93.9mAhg,容量保持率为90.72%. 关键词钙钛矿;锂离子固体电解质;交流阻抗:电子电导率:锂电池 分类号TM911 Performance of perovskite-type Li-ion solid electrolyte LiSr-Ti-Nb,O3 LU Jia-yao2),LI Ying,NI Pei-yuan2,TANG Tian-tian2) 1)School of Metallurgy,Northeastern University,Shenyang 110819,China 2)Key Laboratory for Metallurgical Sensor Materials and Technology (Liaoning Province),Shenyang 110819,China Corresponding author,E-mail:liying @mail.neu.edu.cn ABSTRACT All-solid-state lithium batteries are recognized as the next-generation energy storage batteries due to their high energy density and high security,to which researchers have paid more attention.All-solid-state lithium batteries are composed of solid materials,and the Li-ion solid electrolytes do not contain flammable and explosive organic solvents,which can enhance the safety of the battery.As important components,Li-ion solid electrolytes are widely studied in all-solid-state lithium batteries,which currently include Li-superionic solid electrolyte (LISICON),Na-superionic solid electrolyte (NASICON),garnet-type solid electrolyte,perovskite-type solid electrolyte,sulfide-type solid electrolyte,and polymer solid electrolyte.Li-ion solid electrolytes generally have the advantages of high Li-ion conductivity,low electronic conductivity,wide operating temperatures,wide electrochemical windows,and inhibition of lithium dendrite growth.Among the solid electrolytes,the perovskite-type solid electrolytes have a wide tolerance factor that allows most elements to dope into the ABO3 structure.Additionally,the perovskite-type Li-ion solid electrolytes are summarized into two types: (1)the three-component Lis,Laz3-TiO3(LLTO,0<x<1/6)and (2)the four-component (Li,Sr)(A,B)O3 (A=Zr,Hf,Ti,Sn;B=Nb, Ta).In this paper,the four-component LiSrTiNbyO3 (x=3y/4,=025,0.5,0.6,0.7,0.75,0.8)solid electrolytes were prepared by conventional solid-state reaction method.X-ray diffraction(XRD),scanning electron microscopy,alternating current impedance,and potentiostatic polarization methods were adopted to study the crystal structure,micromorphology,ion conductivity,and electronic conductivity,respectively.XRD analysis show the synthesized samples exhibit a cubic perovskite structure wheny.70 with almost no impurity phase formed.Li.sSrsTiNb.exhibits the highest ion conductivity of 3.62x10Scmelectronic conductivity of 2.55x10Scmat 20 C,and activation energy of only 0.29 eV.The LiFePO/Li half-cell was fabricated using Lio.3sSro.47sTio.3Nbo.7O3 收稿日期:2020-12-03 基金项目:国家自然科学基金资助项目(51834004.51774076.51704062)钙钛矿型锂离子固体电解质 Li2x−ySr1−xTi1−yNbyO3 的性能 卢佳垚1,2),厉    英1,2) 苣,倪培远1,2),唐甜甜1,2) 1) 东北大学冶金学院,沈阳 110819    2) 辽宁省冶金传感器材料及技术重点实验室,沈阳 110819 苣通信作者,E-mail:liying@mail.neu.edu.cn 摘    要    采用高温固相法成功制备了 Li2x−ySr1−xTi1−yNbyO3 (x=3y/4, y=0.25, 0.5, 0.6, 0.7, 0.75, 0.8) 锂离子固体电解质,并通过 X 射线衍射(XRD)、扫描电子显微镜(SEM)、交流阻抗图谱、恒电位极化等分别研究了各个组分的晶体结构、微观形貌、离 子电导率和电子电导率. XRD 显示当 y≤0.70 时,材料为立方钙钛矿型结构,几乎没有杂质相生成. SEM 表明随着掺杂含量 的增加材料的晶粒尺寸逐渐增大. Li0.35Sr0.475Ti0.3Nb0.7O3 锂离子固体电解质有着高离子电导率,为 3.62×10−5 S·cm−1,其电子电 导率为 2.55×10−9 S·cm−1,活化能仅为 0.29 eV. 使用以 Li0.35Sr0.475Ti0.3Nb0.7O3 为隔膜的 LiFePO4 /Li 半电池经过 100 圈循环后, 放电比容量仍有 93.9 mA·h·g−1,容量保持率为 90.72%. 关键词    钙钛矿;锂离子固体电解质;交流阻抗;电子电导率;锂电池 分类号    TM 911 Performance of perovskite-type Li-ion solid electrolyte Li2x−ySr1−xTi1−yNbyO3 LU Jia-yao1,2) ,LI Ying1,2) 苣 ,NI Pei-yuan1,2) ,TANG Tian-tian1,2) 1) School of Metallurgy, Northeastern University, Shenyang 110819, China 2) Key Laboratory for Metallurgical Sensor Materials and Technology (Liaoning Province), Shenyang 110819, China 苣 Corresponding author, E-mail: liying@mail.neu.edu.cn ABSTRACT    All-solid-state lithium batteries are recognized as the next-generation energy storage batteries due to their high energy density  and  high  security,  to  which  researchers  have  paid  more  attention.  All-solid-state  lithium  batteries  are  composed  of  solid materials, and the Li-ion solid electrolytes do not contain flammable and explosive organic solvents, which can enhance the safety of the battery. As important components, Li-ion solid electrolytes are widely studied in all-solid-state lithium batteries, which currently include Li-superionic  solid  electrolyte  (LISICON),  Na-superionic  solid  electrolyte  (NASICON),  garnet-type  solid  electrolyte,  perovskite-type solid electrolyte, sulfide-type solid electrolyte, and polymer solid electrolyte. Li-ion solid electrolytes generally have the advantages of high  Li-ion  conductivity,  low  electronic  conductivity,  wide  operating  temperatures,  wide  electrochemical  windows,  and  inhibition  of lithium  dendrite  growth.  Among  the  solid  electrolytes,  the  perovskite-type  solid  electrolytes  have  a  wide  tolerance  factor  that  allows most elements to dope into the ABO3 structure. Additionally, the perovskite-type Li-ion solid electrolytes are summarized into two types: (1) the three-component Li3xLa2/3−xTiO3 (LLTO, 0 < x < 1/6) and (2) the four-component (Li, Sr)(A, B)O3 (A = Zr, Hf, Ti, Sn; B = Nb, Ta). In this paper, the four-component Li2x−ySr1−xTi1−yNbyO3 (x = 3y/4, y = 0.25, 0.5, 0.6, 0.7, 0.75, 0.8) solid electrolytes were prepared by conventional solid-state reaction method. X-ray diffraction (XRD), scanning electron microscopy, alternating current impedance, and potentiostatic  polarization  methods  were  adopted  to  study  the  crystal  structure,  micromorphology,  ion  conductivity,  and  electronic conductivity, respectively. XRD analysis show the synthesized samples exhibit a cubic perovskite structure when y≤0.70 with almost no impurity  phase  formed.  Li0.35Sr0.475Ti0.3Nb0.7O3 exhibits  the  highest  ion  conductivity  of  3.62×10−5 S·cm−1,  electronic  conductivity  of 2.55×10−9 S·cm−1 at 20 ℃, and activation energy of only 0.29 eV. The LiFePO4 /Li half-cell was fabricated using Li0.35Sr0.475Ti0.3Nb0.7O3 收稿日期: 2020−12−03 基金项目: 国家自然科学基金资助项目(51834004,51774076,51704062) 工程科学学报,第 43 卷,第 8 期:1024−1031,2021 年 8 月 Chinese Journal of Engineering, Vol. 43, No. 8: 1024−1031, August 2021 https://doi.org/10.13374/j.issn2095-9389.2020.12.03.004; http://cje.ustb.edu.cn
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有