正在加载图片...
刘少名等:欧洲固体氧化物燃料电池(SOFC)产业化现状 287· 12h,SOEC模式为60%的蒸气利用率及400mAcm2 [7]Zhang Y H,Liu J,Yin J,et al.Fabrication and performance of 电解12h,26圈模式转化后显示电压衰减速率为 cone-shaped segmented-in-series solid oxide fuel cells.Int/Appl 0.06%.文献[24中报道了Sunfire用的30片电堆 Ceram Technol,2008,5(6):568 [8] 进行的加压电解试验,结果显示绝对压力可以达 Wetzko M,Belzner A,Rohr F J,et al.Solid oxide fuel cell stacks using extruded honeycomb type elements./Power Sources,1999, 到1.5×10Pa,氢气侧和氧气侧的压差范围为低于 83(1-2):148 10Pa,蒸气利用率可以达到90%.目前,为了推进 [9] Yamaguchi T,Shimizu S,Suzuki T,et al.Fabrication and SOC的产业化,Sunfire的主要合作伙伴包括奥 evaluation of a novel cathode-supported honeycomb SOFC stack 迪、Vaillant、波音以及Thyssen Krupp Marine Systems Mater Lett,.2009,63(29):2577 等公司 [10]Kendall K.Progress in microtubular solid oxide fuel cells.IntJ Appl Ceram Technol,2010,7(1):1 4结论和展望 [11]Kendall K,Dikwal C M,Bujalski W.Comparative analysis of thermal and redox cycling for microtubular SOFCs.ECS Trans, SOFC作为一种清洁高效的发电装置,其应用 2007,7(1):1521 市场覆盖面广,可覆盖几十瓦的便携式发电装置 [12]Bujalski W.Dikwal C M,Kendall K.Cycling of three solid oxide 到MW级发电系统,不同的应用场景可选择不同 fuel cell types.J Power Sources,2007,171(1):96 结构的SOFC.本文介绍了国际具有领先水平的 [13]Vora S.Development of high power density seal-less SOFCs.ECS SOFC生产厂家的技术现状,着重介绍了欧洲平板 Trans,2007,7(1):149 式SOFC厂商的相关技术,目标多为适用于与可再 [14]Larminie J,Dicks A,McDonald M S.Fuel Cell Systems Explained.Chichester:J.Wiley,2003 生能源耦合的分布式发电系统. [15]Stolten D,Samsun R C,Garland N.Fuel Cells:Data.Facts,and 我国的SOFC技术与欧洲相比还有很大差距, Figures.New Jersey:Wiley-VCH,2016 但随着技术的进步、环保需求的逐渐提高以及国 [16]Singnal S C,Kendall K.High Temperature Solid Oxide Fuel Cell: 家氢能与燃料电池相关政策的出台,我国SOFC的 Fundamentals,Design and Applications.Beijing:Science Press, 技术水平必会逐渐提高,制造成本也会逐渐降低 2007 另外,SOFC技术与可再生能源相互配合,弥补风 [17]Hickey D,Alinger M,Shapiro A,et al.Stack development at GE- 力光伏发电稳定性不足的缺点0,在增强电网清 fuel cells.ECS Trans,2017,78(1):107 洁供电的能力和供电稳定性上具有重大作用 [18]Mukerjee S,Haltiner K.Kerr R,et al.Latest update on Delphi's solid oxide fuel cell stack for transportation and stationary applications.ECS Trans,2011,35(1):139 参考文献 [19]Vora S D,Lundberg WL,Pierre JF.Overview of US department [1]Yi B L.Fuel Cell-Principle,Technology and Application.Beijing: of energy office of fossil energy's solid oxide fuel cell program Chemical Industry Press,2003 ECS Tra,2017,78(1):3 (衣宝廉.燃料电池:原理技术应用.北京:化学工业出版社 [20]Noponen M,Torri P,Goos J,et al.Status of solid oxide fuel cell 2003) development at elcogen.ECS Trans,2015,68(1):151 [2]Yi B L.Fuel Cell-An Efficient and Environmentally Friendly Way [21]Barrett S.Convion C50 product being validated for distributed to Generate Electricity.Beijing:Chemical Industry Press,2000 generation.Fuel Cells Bull,2015,2015(4):6 (衣宝廉燃料电池一高效、环境友好的发电方式.北京:化学工 [22]Mai A,Fleischhauer F,Denzler R,et al.Progress in HEXIS' 业出版社,2000) Development:Galileo 1000 N and HEXIS'Next Generation SOFC [3]Li J.Solid oxide fuel cells:development status and key System.ECS Trans,2017,78(1):97 technologies.J Funct Mater Devices,2007,13(6):683 [23]Beale S.Precision engineering for future propulsion and power (李箭.固体氧化物燃料电池:发展现状与关键技术.功能材料 systems:a perspective from Rolls-Royce.Philos Trans R Soc A, 与器件学报,2007,13(6):683) 2012,370(1973:4130 [4]Hassmann K.SOFC power plants,the Siemens-Westinghouse [24]Brabandt J,Posdziech O.System approach of a pressurized high- approach.Fuel Cells,2001,1(1):78 temperature electrolysis.ECS Trans,2017,78(1):2987 [5]Timurkutluk B,Timurkutluk C,Mat M D,et al.A review on [25]Bertoldi M,Bucheli O,Ravagni A.Development,manufacturing cell/stack designs for high performance solid oxide fuel cells. and deployment of SOFC-based products at Solid power.ECS Renewable Sustainable Energy Rev,2016,56:1101 Trans,2015,68(1):117 [6]Suzuki T,Yamaguchi T,Fujishiro Y,et al.Improvement of SOFC [26]Inagaki T,Nishiwaki F,Yamasaki S,et al.Intermediate performance using a microtubular,anode-supported SOFC. temperature solid oxide fuel cell based on lanthanum gallate Electrochem Soc.2006.153(5):A925 electrolyte.J Power Sources,2008,181(2):27412 h,SOEC 模式为60% 的蒸气利用率及400 mA·cm−2 电解 12 h,26 圈模式转化后显示电压衰减速率为 0.06%. 文献 [24] 中报道了 Sunfire 用的 30 片电堆 进行的加压电解试验,结果显示绝对压力可以达 到 1.5×106 Pa,氢气侧和氧气侧的压差范围为低于 104 Pa,蒸气利用率可以达到 90%. 目前,为了推进 SOC 的产业化 , Sunfire 的主要合作伙伴包括奥 迪、Vaillant、波音以及 Thyssen Krupp Marine Systems 等公司. 4    结论和展望 SOFC 作为一种清洁高效的发电装置,其应用 市场覆盖面广,可覆盖几十瓦的便携式发电装置 到 MW 级发电系统,不同的应用场景可选择不同 结构的 SOFC. 本文介绍了国际具有领先水平的 SOFC 生产厂家的技术现状,着重介绍了欧洲平板 式 SOFC 厂商的相关技术,目标多为适用于与可再 生能源耦合的分布式发电系统. 我国的 SOFC 技术与欧洲相比还有很大差距, 但随着技术的进步、环保需求的逐渐提高以及国 家氢能与燃料电池相关政策的出台,我国 SOFC 的 技术水平必会逐渐提高,制造成本也会逐渐降低. 另外,SOFC 技术与可再生能源相互配合,弥补风 力光伏发电稳定性不足的缺点[50] ,在增强电网清 洁供电的能力和供电稳定性上具有重大作用. 参    考    文    献 Yi B L. Fuel Cell-Principle, Technology and Application. Beijing: Chemical Industry Press, 2003 (衣宝廉. 燃料电池: 原理·技术·应用. 北京: 化学工业出版社, 2003) [1] Yi B L. Fuel Cell-An Efficient and Environmentally Friendly Way to Generate Electricity. Beijing: Chemical Industry Press, 2000 (衣宝廉. 燃料电池—高效、环境友好的发电方式. 北京: 化学工 业出版社, 2000) [2] Li  J.  Solid  oxide  fuel  cells:  development  status  and  key technologies. J Funct Mater Devices, 2007, 13(6): 683 (李箭. 固体氧化物燃料电池: 发展现状与关键技术. 功能材料 与器件学报, 2007, 13(6):683) [3] Hassmann  K.  SOFC  power  plants,  the  Siemens‐ Westinghouse approach. Fuel Cells, 2001, 1(1): 78 [4] Timurkutluk  B,  Timurkutluk  C,  Mat  M  D,  et  al.  A  review  on cell/stack  designs  for  high  performance  solid  oxide  fuel  cells. Renewable Sustainable Energy Rev, 2016, 56: 1101 [5] Suzuki T, Yamaguchi T, Fujishiro Y, et al. Improvement of SOFC performance  using  a  microtubular,  anode-supported  SOFC. J Electrochem Soc, 2006, 153(5): A925 [6] Zhang  Y  H,  Liu  J,  Yin  J,  et  al.  Fabrication  and  performance  of cone‐shaped segmented-in-series solid oxide fuel cells. Int J Appl Ceram Technol, 2008, 5(6): 568 [7] Wetzko M, Belzner A, Rohr F J, et al. Solid oxide fuel cell stacks using extruded honeycomb type elements. J Power Sources, 1999, 83(1-2): 148 [8] Yamaguchi  T,  Shimizu  S,  Suzuki  T,  et  al.  Fabrication  and evaluation of a novel cathode-supported honeycomb SOFC stack. Mater Lett, 2009, 63(29): 2577 [9] Kendall  K.  Progress  in  microtubular  solid  oxide  fuel  cells. Int J Appl Ceram Technol, 2010, 7(1): 1 [10] Kendall  K,  Dikwal  C  M,  Bujalski  W.  Comparative  analysis  of thermal  and  redox  cycling  for  microtubular  SOFCs. ECS Trans, 2007, 7(1): 1521 [11] Bujalski W, Dikwal C M, Kendall K. Cycling of three solid oxide fuel cell types. J Power Sources, 2007, 171(1): 96 [12] Vora S. Development of high power density seal-less SOFCs. ECS Trans, 2007, 7(1): 149 [13] Larminie  J,  Dicks  A,  McDonald  M  S. Fuel Cell Systems Explained. Chichester: J. Wiley, 2003 [14] Stolten D, Samsun R C, Garland N. Fuel Cells: Data, Facts, and Figures. New Jersey: Wiley-VCH, 2016 [15] Singnal S C, Kendall K. High Temperature Solid Oxide Fuel Cell: Fundamentals, Design and Applications.  Beijing:  Science  Press, 2007 [16] Hickey D, Alinger M, Shapiro A, et al. Stack development at GE￾fuel cells. ECS Trans, 2017, 78(1): 107 [17] Mukerjee  S,  Haltiner  K,  Kerr  R,  et  al.  Latest  update  on  Delphi's solid  oxide  fuel  cell  stack  for  transportation  and  stationary applications. ECS Trans, 2011, 35(1): 139 [18] Vora S D, Lundberg W L, Pierre J F. Overview of US department of energy office of fossil energy ’s solid oxide fuel cell program. ECS Trans, 2017, 78(1): 3 [19] Noponen M, Torri P, Göös J, et al. Status of solid oxide fuel cell development at elcogen. ECS Trans, 2015, 68(1): 151 [20] Barrett  S.  Convion  C50  product  being  validated  for  distributed generation. Fuel Cells Bull, 2015, 2015(4): 6 [21] Mai  A,  Fleischhauer  F,  Denzler  R,  et  al.  Progress  in  HEXIS ’ Development: Galileo 1000 N and HEXIS'Next Generation SOFC System. ECS Trans, 2017, 78(1): 97 [22] Beale  S.  Precision  engineering  for  future  propulsion  and  power systems:  a  perspective  from  Rolls-Royce. Philos Trans R Soc A, 2012, 370(1973): 4130 [23] Brabandt J, Posdziech O. System approach of a pressurized high￾temperature electrolysis. ECS Trans, 2017, 78(1): 2987 [24] Bertoldi  M,  Bucheli  O,  Ravagni  A.  Development,  manufacturing and  deployment  of  SOFC-based  products  at  Solid  power. ECS Trans, 2015, 68(1): 117 [25] Inagaki  T,  Nishiwaki  F,  Yamasaki  S,  et  al.  Intermediate temperature  solid  oxide  fuel  cell  based  on  lanthanum  gallate electrolyte. J Power Sources, 2008, 181(2): 274 [26] 刘少名等: 欧洲固体氧化物燃料电池(SOFC)产业化现状 · 287 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有