正在加载图片...
The Journal of Physical Chemistry B Article (10)Wu, B. et al Structures of the CXCR4 chemokine GPCR with (32)Frisch, M. J; Trucks, G.w. gel, H. B. Scuseria, G.E. small-molecule and cyclic peptide antagonists. Science 2010, 330, et al. Gaussian, Inc, Wallingford, CT, 2010. 1066-71 (33)Humphrey, W; Dalke, A; Schulten, K VMD: visual molecular 11)Chien, E. Y; et al. Structure of the human dopamine D3 dynamics. J. Mol Graphics 1996, 14(33-8),27-8. (12)Payne, S. L; Johansson, A. M. Strange, P. G. Mechanisms of ediction. J. Comput -Aided Mol. Des. 2002, 16, 11-26. (35)Lomize, M. A Lomize, A. L; Pogozheva, I. D Mosberg,H.I receptor. Neurochem. 2002, 82, 1106-17 OPM: orientations of proteins in membranes database. Bioinformatics 3)Jentsch, J. D. Roth, R The neuropsychopharmacology of 22,623-5. phencyclidine: from NMDA receptor hypofunction to the dopamine (36)Phillips, J. C et al. Scalable molecular dynamics with NAMD.J. hypothesis of schizophrenia. Neuropsychopharmacology 1999, 20, 20 Comput.chem.2005,26,1781-802 (37)MacKerell, A. D, Jr; et al. All-Atom Empirical Potential for (14)Castner, S. A; Williams, G. V; Goldman-Rakic, P. S. Reversal of Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. antipsychotic-induced working memory deficits by short-term B1998,102,3586-3616 ulation. Science 2000, 287, 2020-2. (38)Mackerell, A D, Jr; Feig, M. Brooks, C. L, III Extending the (15)Jin, G. Z; Zhu, Z. T. Fu, Y.(-)-Stepholidine: a potential novel treatment of backbone energetics in protein force fields: limitations antipsychotic drug with dual DI receptor agonist and D2 receptor gas-phase quantum mechanics in reproducing protein conformational (16)dong,Z.j;Guo,X;Chen,L.j;Han,Y.F;Jin,G.Z.Dual(39)jorgensen,W.l;ChandrasekharJ-;Madura,j.d.compaRIson actions of (-)-stepholidine on the dopamine receptor-mediated adenylate cyclase activity in rat corpus striatum. Life Sci. 1997, 61 of simple potential functions for simulating liquid water. J. Chem. Phys. 465-72. 983,79,926-935 (17)Jin, G. Z; Huang, K. X; Sun, B. C. Dual actions of (40) Darden, T York, D Pedersen, L. Particle mesh Ewald: An method for ewald ()stepholidine on dopamine receptor subtypes after substantia large systems. J. Cherm. Phys. 1993, 98,1008910092. nigra lesion. Neurochem. Int. 1992, 20(Suppl. ),175S-178S. (41)Martyna, G. J; Tobias, D. ]; Klein, M.L.Constant (18)Mo, J; et al. Recent developments in studies of l-stepholidine molecular dynamics algorithms.J.Chem.Phys.1994,101,4177-4189 and its analogs: chemistry, Pharmacology and clinical implicate Cum.Med.Chem.2007,142996-3002. (42)Scheerer, P; et al. Crystal structure of opsin in its G-protein- (19)Cai, N. [A controlled study on the treatment of tardive interacting conformation. Nature 2008, 455,497-502 dyskinesia using I-stepholidine]. Zhonghua Shen Jing Jing Shen Ke (43)Ballesteros, J. A; et al. Activation of the beta 2-adrenerg receptor involves disruption of an ionic lock between the cytoplasmic zhi1988,21(281-3),31 nds of transmembrane segments 3 and 6. J. Biol. Chem. 2001, 276, (20)Fu, W; et al. Dopamine DI receptor agonist and D2 receptor 29171-7 ntagonist effects of the natural product (-)stepholidine: molecular (44)Vogel, R; et al. Functional role of the "ionic lock odeling and ics simulations. Biophys. J. 2007, 93, 1431-4 terhelical hydrogen-bond network in family A heptahelical receptors (21)Li, Y. Y; Hou, T. J; Goddard, W. A, Ill Computationa JMol.Biol.2008,380648-55 modeling of structure-function of g protein-coupled receptors with (45)Shi, L; Javitch, J. A The binding site of aminergic G protein- (22)Fu, W; et al. Brownian dynamics simulations of the recognition coupled receptors: the transmembrane seg extracellular loop. Annu. Rev. Pharmacol. Tox of the scorpion toxin maurotoxin with the voltage-gated potassium ion (46)Shi, L; Javitch, J. A. The second exti channels. Biophys. J. 2002, 83, 2370-85 eceptor lines the binding-site crevice. Proc. (23)Cavasotto, C. N Phatak, S. S. Homology modeling in drug Sci. U. S. A. 2004, 101, 440-5 discovery: current trends and applications. Drug Discovery Today 2009, (47)Strader, C D et al. Identification of residues required for ligand 14,676-83. binding to the beta-adrenergic receptor. Proc. Natl. Acad. Sci. U.S.A. (24)Kobilka, B. K; Deupi, X. Conformational complexity of G 987,84,4384-8. protein-coupled receptors. Trends Pharmacol. Sci. 2007, 28, 397-406 (48) Liapakis, G. et al. The forgotten serine. A critical role for Ser- (25)Rosenbaum, D. M. Rasmussen, S. G. Kobilka, B.K.The 2035.42 in ligand binding to and activation of the beta 2-adrenerg structure and function of G-protein-coupled receptors. Nature 2009, receptor. J Biol Chem. 2000, 275, 37779-88 459,356-63. (49)Wieland, K; Zuurmond, H. M; Krasel, C i; Ijzerman, A. P j (26)Altschul, S. F; et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res cognition and in activation of the beta 2-adrenergic receptor. Pro 1997,25,3389-402. Natl. Acad. Sci. U. S. A. 1996, 93, 9276-81 (27)Thompson, J. D. Gibson, T. J; Plewniak, F; Jeanmougin, F. (50)Manivet, P et al. The serotonin binding site of human and Higgins, D. G. The CLUSTAL X windows interface: flexible strategies murine 5-HT2B receptors: molecular modeling and site-directed for multiple sequence alignment aided by quality analysis tools. Nucleic mutagenesis. J. Biol Chem. 2002, 277, 17170-8 satisfaction of spatial restraints. ). Mol. Biol 1993, 234, 779-8 6y A(si)Tomic,M;Seeman,P;George,SR;ODowd,BEDopamine Acids Res1997,25,4876-82. binding. Biochem. Biophys Res. Commun. 1993, 191, 1020-7gonist (52)Cox, B. A; Henningsen, R. A; Spanoyannis, A; Neve, R. L Louis, MO 63144. Neve, K. A. Contributions of conserved serine residues to the (30)Laskowski, R A. Rullmannn, J. A; MacArthur, M. W; Kaptein, interactions of ligands with dopamine D2 receptors. J. Neurochem R; Thornton, J M. AQUA and PROCHECK- NMR: Programs for 92,S9,627-35. checking the quality of protein structures solved by NMR J. Biomol (53)Rasmussen, S. G; et al. Crystal structure of the beta2 adrenergic NMR1996,8,477-86. eptor-Gs protein complex. Nature 2011, 477, $49-55 (31)Xuan, J C. Lin, G D. Jin, G. Z; Chen, Y. [Relevance of stereo (54)Chung, K. Y. et al Conformational changes in the G protein Gs and induced by the beta2 adrenergic receptor. Nature 2011, 477, 611-5. ffects on dopa ptors ]. Zhongguo Yao Li Xue Bao 1988, 9, 8130 dx. dolora/o.021/p30492351 Phys. Chem. B2012116,8121-813(10) Wu, B.; et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 2010, 330, 1066−71. (11) Chien, E. Y.; et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 2010, 330, 1091−5. (12) Payne, S. L.; Johansson, A. M.; Strange, P. G. Mechanisms of ligand binding and efficacy at the human D2(short) dopamine receptor. J. Neurochem. 2002, 82, 1106−17. (13) Jentsch, J. D.; Roth, R. H. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1999, 20, 201− 25. (14) Castner, S. A.; Williams, G. V.; Goldman-Rakic, P. S. Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 2000, 287, 2020−2. (15) Jin, G. Z.; Zhu, Z. T.; Fu, Y. (-)-Stepholidine: a potential novel antipsychotic drug with dual D1 receptor agonist and D2 receptor antagonist actions. Trends Pharmacol. Sci. 2002, 23, 4−7. (16) Dong, Z. J.; Guo, X.; Chen, L. J.; Han, Y. F.; Jin, G. Z. Dual actions of (-)-stepholidine on the dopamine receptor-mediated adenylate cyclase activity in rat corpus striatum. Life Sci. 1997, 61, 465−72. (17) Jin, G. Z.; Huang, K. X.; Sun, B. C. Dual actions of (-)-stepholidine on dopamine receptor subtypes after substantia nigra lesion. Neurochem. Int. 1992, 20 (Suppl.), 175S−178S. (18) Mo, J.; et al. Recent developments in studies of l-stepholidine and its analogs: chemistry, pharmacology and clinical implications. Curr. Med. Chem. 2007, 14, 2996−3002. (19) Cai, N. [A controlled study on the treatment of tardive dyskinesia using 1-stepholidine]. Zhonghua Shen Jing Jing Shen Ke Za Zhi 1988, 21 (281−3), 319. (20) Fu, W.; et al. Dopamine D1 receptor agonist and D2 receptor antagonist effects of the natural product (-)-stepholidine: molecular modeling and dynamics simulations. Biophys. J. 2007, 93, 1431−41. (21) Li, Y. Y.; Hou, T. J.; Goddard, W. A., III Computational modeling of structure-function of g protein-coupled receptors with applications for drug design. Curr. Med. Chem. 2010, 17, 1167−80. (22) Fu, W.; et al. Brownian dynamics simulations of the recognition of the scorpion toxin maurotoxin with the voltage-gated potassium ion channels. Biophys. J. 2002, 83, 2370−85. (23) Cavasotto, C. N.; Phatak, S. S. Homology modeling in drug discovery: current trends and applications. Drug Discovery Today 2009, 14, 676−83. (24) Kobilka, B. K.; Deupi, X. Conformational complexity of G￾protein-coupled receptors. Trends Pharmacol. Sci. 2007, 28, 397−406. (25) Rosenbaum, D. M.; Rasmussen, S. G.; Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 2009, 459, 356−63. (26) Altschul, S. F.; et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389−402. (27) Thompson, J. D.; Gibson, T. J.; Plewniak, F.; Jeanmougin, F.; Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876−82. (28) Sali, A.; Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779−815. (29) Tripos International, SYBYL 6.9, 1699 South Hanley Rd., St. Louis, MO 63144. (30) Laskowski, R. A.; Rullmannn, J. A.; MacArthur, M. W.; Kaptein, R.; Thornton, J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 1996, 8, 477−86. (31) Xuan, J. C.; Lin, G. D.; Jin, G. Z.; Chen, Y. [Relevance of stereo and quantum chemistry of four tetrahydroprotoberberines to their effects on dopamine receptors]. Zhongguo Yao Li Xue Bao 1988, 9, 197−205. (32) Frisch, M. J.; Trucks, G. W. ; Schlegel, H. B.; Scuseria, G. E.; et al. Gaussian, Inc., Wallingford, CT, 2010. (33) Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 1996, 14 (33−8), 27−8. (34) Wang, R.; Lai, L.; Wang, S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput.-Aided Mol. Des. 2002, 16, 11−26. (35) Lomize, M. A.; Lomize, A. L.; Pogozheva, I. D.; Mosberg, H. I. OPM: orientations of proteins in membranes database. Bioinformatics 2006, 22, 623−5. (36) Phillips, J. C.; et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781−802. (37) MacKerell, A. D., Jr.; et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B 1998, 102, 3586−3616. (38) Mackerell, A. D., Jr.; Feig, M.; Brooks, C. L., III Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 2004, 25, 1400−15. (39) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926−935. (40) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089−10092. (41) Martyna, G. J.; Tobias, D. J.; Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994, 101, 4177−4189. (42) Scheerer, P.; et al. Crystal structure of opsin in its G-protein￾interacting conformation. Nature 2008, 455, 497−502. (43) Ballesteros, J. A.; et al. Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem. 2001, 276, 29171−7. (44) Vogel, R.; et al. Functional role of the “ionic lock”--an interhelical hydrogen-bond network in family A heptahelical receptors. J. Mol. Biol. 2008, 380, 648−55. (45) Shi, L.; Javitch, J. A. The binding site of aminergic G protein￾coupled receptors: the transmembrane segments and second extracellular loop. Annu. Rev. Pharmacol. Toxicol. 2002, 42, 437−67. (46) Shi, L.; Javitch, J. A. The second extracellular loop of the dopamine D2 receptor lines the binding-site crevice. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 440−5. (47) Strader, C. D.; et al. Identification of residues required for ligand binding to the beta-adrenergic receptor. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 4384−8. (48) Liapakis, G.; et al. The forgotten serine. A critical role for Ser- 2035.42 in ligand binding to and activation of the beta 2-adrenergic receptor. J. Biol. Chem. 2000, 275, 37779−88. (49) Wieland, K.; Zuurmond, H. M.; Krasel, C.; Ijzerman, A. P.; Lohse, M. J. Involvement of Asn-293 in stereospecific agonist recognition and in activation of the beta 2-adrenergic receptor. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 9276−81. (50) Manivet, P.; et al. The serotonin binding site of human and murine 5-HT2B receptors: molecular modeling and site-directed mutagenesis. J. Biol. Chem. 2002, 277, 17170−8. (51) Tomic, M.; Seeman, P.; George, S. R.; O’Dowd, B. F. Dopamine D1 receptor mutagenesis: role of amino acids in agonist and antagonist binding. Biochem. Biophys. Res. Commun. 1993, 191, 1020−7. (52) Cox, B. A.; Henningsen, R. A.; Spanoyannis, A.; Neve, R. L.; Neve, K. A. Contributions of conserved serine residues to the interactions of ligands with dopamine D2 receptors. J. Neurochem. 1992, 59, 627−35. (53) Rasmussen, S. G.; et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 2011, 477, 549−55. (54) Chung, K. Y.; et al. Conformational changes in the G protein Gs induced by the beta2 adrenergic receptor. Nature 2011, 477, 611−5. The Journal of Physical Chemistry B Article 8130 dx.doi.org/10.1021/jp3049235 | J. Phys. Chem. B 2012, 116, 8121−8130
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有