正在加载图片...
REVIEW ARTICLES NATURE PHOTONICS DOL:10.1038/NPHOTON.2013.361 36. Pastrirk.I..Cruz,L.Walowicz.K.,Lozovoy,V.Dantus,M.Selective 66. Albert,O.,Sherman,L.,Mourou,G.Norris,T.B.Smart microscope:An two-photon microscopy with shaped femtosecond pulses.Opt.Express 11, adaptive optics learning system for aberration correction in multiphoton 1695-1701(2003) confocal microscopy.Opt.Lett.25,52-54(2000). 37.Cruz.I.Pastirk.I..Comstock.M..Lozovoy,V.Dantus,M.Use of coherent 67. Booth,M.J.,Neil,M.A.A..Juskaitis,R.Wilson,T.Adaptive aberration control methods through scattering biological tissue to achieve functional correction in a confocal microscope.Proc.Natl Acad Sci USA99, imaging.Proc.Natl Acad.Sci.USA 101,16996-17001(2004). 5788-579220021 38. Cruz,J.,Pastirk,I.,Comstock,M.Dantus,M.Multiphoton intrapulse 68 Ji,N.,Milkie,D.Betzig.E.Adaptive optics via pupil segmentation for high- interference:Coherent control through scattering tissue.Opt.Express 12. resolution imaging in biological tissues.Nat.Methods 7,141-147 (2009). 4144-41492004】. 69. Leray,A.Mertz,J.Rejection of two-photon fluorescence background in 39. Meshulach,D.Silberberg.Y.Coherent quantum control of two-photon thick tissues by differential aberration imaging.Opt.Express 14, transitions by a femtosecond laser pulse.Nature 396,239-242(1998). 10565-10573(2006). 40. Pillai,R.et al.Multiplexed two-photon microscopy of dynamic biological 10. Girkin,I.M.,Poland,S.Wright,A.J.Adaptive optics for deeper imaging of samples with shaped broadband pulses.Opt.Express 17,12741-12752(2009). biological samples.Curr.Opin.Biotechnol.20,106-110(2009). 41. Fischer,M.et al.Two-photon absorption and self-phase modulation 1 Facomprez,A.,Beaurepaire,E.Debarre,D.Accuracy of correction in measurements with shaped femtosecond laser pulses.Opt.Lett.30, modal sensorless adaptive optics.Opt.Express 20,2598-2612(2012). 1551-1553(2005). Bewersdorf,J.,Pick,R.Hell,S.W.Multifocal multiphoton microscopy. 42. Fischer,M..Liu,H.,Piletic,I.Warren,W.Simultaneous self-phase 0pt.Let.23,655-657(1998). modulation and two-photon absorption measurement by a spectra 73. Buist,A.H.,Muller,M.,Squier,J.Brakenhoff,G.J.Real time two-photon homodyne Z-scan method.Opt.Express 16,4192-4205(2008). absorption microscopy using multi point excitation.I.Microsc.192, 43. Fischer,M.et al.Self-phase modulation signatures of neuronal activity.Opt. 217-226(1998). Lett.33219-221(2008). 74. Straub,M.Hell,S.W.Multifocal multiphoton microscopy:A fast and Beaurepaire,E.,Oheim,M.Mertz,J.Ultra-deep two-photon fluorescence efficient tool for 3-D fluorescence imaging.Bioimaging6,177-185(1998). excitation in turbid media.Opt.Commun.188,25-29 (2001). 75. Egner,A.&Hell,S.W.Time multiplexing and parallelization in multifocal Ohem,M.,Beaurepaire,EChaigneau,E.,Mertz,.&Charpak,S.Two- multiphoton microscopy.J.Opt.Soc.Am.A 17,1192-201 (2000). photon microsscopy in brain tissue:Parameters influencing the imaging 76. Nielsen,T.,Fricke,M.,Hellweg,D.Andresen,P.High efficiency beam depth.J.Neurosci.Meth.111,29-37 (2001). splitter for multifocal multiphoton microscopy Microsc.201, 46. Buehler,C.,Kim,K.H.,Dong.C.Y.,Masters,B.So,P.T.C.Innovations 368-376(2001). in two-photon deep tissue microscopy.Eng.Med.Biol.Mag.18, 1 Bahlmann,K.et al.Multifocal multiphoton microscopy (MMM)at a frame 23-30(1999). rate beyond 600 Hz.Opt.Express 15,10991-10998(2007). Kobat,D.,Horton,N.G.Xu,C.In vivo two-photon microscopy to 1.6-mm 78. Niesner,R.,Andresen,V..Neumann,J.,Spiecker,H.Gunzer,M.The depth in mouse cortex.J.Biomed.Opt.16,106014(2011) power of single and multibeam two-photon microscopy for high-resolution 48. Balu,M.et al.Effect of excitation wavelength on penetration depth in and high-speed deep tissue and intravital imaging.Biophys.I.93, nonlinear optical microscopy of turbid media.J.Biomed.Opt.14, 2519-2529(2007). 010508(2009). 79. Kim,K.H.et al.Multifocal multiphoton microscopy based on multianode 49. Chu,S.W.et al.Multimodal nonlinear spectral microscopy based on a photomultiplier tubes.Opt.Express 15,11658-11678(2007). femtosecond Cr:forsterite laser.Opt.Lett.26,1909-1911 (2001) 0 Lee,A.M.D.et al.In vivo video rate multiphoton microscopy imaging of Levene,M.J.,Dombeck,D.A.,Kasischke,K.A.,Molloy,R.P.Webb,W.W. human skin.Opt.Lett.36,2865-2867 (2011). In vivo multiphoton microscopy of deep brain tissue.I.Neurophysiol.91, 81. Fan,G.,Fujisaki,H.,Miyakawi,A.,Tsien,R.Ellisman,M.Video-rate 1908-1912(2004). scanning two-photon excitation fluorescence microscopy and ratio imaging 51 Jung,W.et al.Miniaturized probe based on a microelectromechanical with chameleons.Biophys..76,2412-2420(1999). system mirror for multiphoton microscopy.Opt.Lett.33, 82. Veilleux,I.,Spencer,J.A.,Biss,D.P,Cote,D.Lin,C.P.In vivo cell tracking 1324-1326(2008). with video rate multimodality laser scanning microscopy.IEEEI.Sel.Top. Chia,S.H.et al.Miniaturized video-rate epi-third-harmonic-generation Quant.Electron.14,10-18 (2008). fiber-microscope.Opt.Express 18,17382-17391(2010). Grewe,B.E,Voigt,F.E,van't Hoff,M.Helmchen,E Fast two-layer two- 53. Saar,B.G.Johnston,R.S..Freudiger,C.W,Xie,X.S.&Seibel,E J.Coherent photon imaging of neuronal cell populations using an electrically tunable Raman scanning fiber endoscopy.Opt.Left.36,2396-2398(2011). lens.Biomed.Opt.Express 2,2035-2046(2011). 54 Rivera,D.R.,Brown,C.M.,Ouzounov,D.G.,Webb,W.W.Xu,C. 84 Bullen,A.,Patel,S.Saggau,P.High-speed,random-access fluorescence Multifocal multiphoton endoscope.Opt.Lett.37,1349-1351 (2012) microscopy:I.High-resolution optical recording with voltage-sensitive dyes Martini,I.et al.Multifocal two-photon laser scanning microscopy combined and ion indicators.Biophrys.I.73,477-491(1997). with photo-activatable GFP for in vivo monitoring of intracellular protein 85. Shao,Y.et al.Ultrafast,large-field multiphoton microscopy based on dynamics in real time.I.Struct.Biol.158,401-409 (2007). an acousto-optic deflector and a spatial light modulator.Opt.Lett.37 56. Chen,Z.,Wei,L.,Zhu,X.Min,W.Extending the fundamental imaging- 2532-2534(2012). depth limit of multi-photon microscopy by imaging with photo-activatable 86. Salomea.R.et al.Ultrafast random-access scanning in two-photon fluorophores.Opt.Express 20,18525-18536(2012). microscopy using acousto-optic deflectors.J.Neurosci.Meth.154, 57. Cheng.P.C.et al.Highly efficient upconverters for multiphoton fluorescence 161-74(2006). microscopy.I.Microsc.189,199-212(1998). 87. Reddy,G.D.,Kelleher,K.,Fink,R.Saggau,P.Three-dimensional random 58 Extermann,J.et al.Nanodoublers as deep imaging markers for multi-photon access multiphoton microscopy for functional imaging of neuronal activity. microscopy.Opt.Express 17,15342-15349(2009). Nature Neurosci.11,713-720 (2008). 59. Zinter,J.P.Levene,M.I.Maximizing fluorescence collection efficiency in 88. Koenig,K.,Liang,H.,Berns,M.Tromberg,B.J.Cell damage in near- multiphoton microscopy.Opt.Express 19,15348-15362(2011). infrared multimode optical traps as a result of multiphoton absorption.Opt 60. Amir,W.et al.Simultaneous imaging of multiple focal planes using a two Ltt.21.1090-1092(1996). photon scanning microscope.Opt.Lett.32,1731-1733(2007). 89. Kirkby,P.A.,Nadella,K.M.N.S.Silver,R.A.A compact acousto-optic 61. Carriles,R,Sheetz,K.E.,Hoover,E.E.Squier,J.A.Barzda,V. lens for 2D and 3D femtosecond based 2-photon microscopy.Opt.Express Simultaneous multifocal,multiphoton,photon counting microscopy.Opt. 18,13721-13745(2010). Express16,10364-10371(2008). 90. Kremer,Y.et al.A spatio-temporally compensated acousto-optic scanner 62. Benninger,R.K.P.,Ashby,W.J,Ring,E.A.Piston,D.W.Single-photon- for two-photon microscopy providing large field of view.Opt.Express 16, counting detector for increased sensitivity in two-photon laser scanning 10066-10076(2008). microscopy.Opt.Lett.33,2895-2897 (2008). 91. Botcherby,E.J.et al.Aberration-free three-dimensional multiphoton Sandkuijl,D.,Cisek,R.,Major,A.Barzda,V.Differential microscopy for imaging of neuronal activity at kHz rates.Proc.Natl Acad.Sci.USA 109 fluorescence-detected nonlinear absorption linear anisotropy based on a 2919-2924(2012). staggered two-beam femtosecond Yb:KGW oscillator.Biomed.Opt.Express 92. Brakenhoff,G.J.et al.Real-time two-photon confocal microscopy using a 1,895-901(2010). femtosecond,amplified Ti:sapphire system.J.Microsc.181,253-259(1996) 64. Sherman,L.Ye,J.Y.,Albert,O.Norris,T.B.Adaptive correction of depth- Oron,D.,Tal,E.Silberberg,Y.Scanningless depth-resolved microscopy. induced aberrations in multiphoton scanning microscopy using a deformable Opt.Express13,1468-1476(2005). mirror.J.Microsc.206,65-71 (2002). 94. Zhu,G.,van Howe,J,Durst,M.,Zipfel,W.R.Xu,C.Simultaneous spatial 65. Neil,M.A.A.et al.Adaptive aberration correction in a two-photon and temporal focusing of femtosecond pulses.Opt.Express 13, microscope.J.Microsc.200,105-108(2000) 2153-2159(2005). 100 NATURE PHOTONICS VOL 7 FEBRUARY 2013 www.nature.com/naturephotonics 2013 Macmillan Publishers Limited.All rights reserved.© 2013 Macmillan Publishers Limited. All rights reserved. 100 NATURE PHOTONICS | VOL 7 | FEBRUARY 2013 | www.nature.com/naturephotonics 36. Pastrirk, I., Cruz, J., Walowicz, K., Lozovoy, V. & Dantus, M. Selective two-photon microscopy with shaped femtosecond pulses. Opt. Express 11, 1695–1701 (2003). 37. Cruz, J., Pastirk, I., Comstock, M., Lozovoy, V. & Dantus, M. Use of coherent control methods through scattering biological tissue to achieve functional imaging. Proc. Natl Acad. Sci. USA 101, 16996–17001 (2004). 38. Cruz, J., Pastirk, I., Comstock, M. & Dantus, M. Multiphoton intrapulse interference: Coherent control through scattering tissue. Opt. Express 12, 4144–4149 (2004). 39. Meshulach, D. & Silberberg, Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature 396, 239–242 (1998). 40. Pillai, R. et al. Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses. Opt. Express 17, 12741–12752 (2009). 41. Fischer, M. et al. Two-photon absorption and self-phase modulation measurements with shaped femtosecond laser pulses. Opt. Lett. 30, 1551–1553 (2005). 42. Fischer, M., Liu, H., Piletic, I. & Warren, W. Simultaneous self-phase modulation and two-photon absorption measurement by a spectral homodyne Z-scan method. Opt. Express 16, 4192–4205 (2008). 43. Fischer, M. et al. Self-phase modulation signatures of neuronal activity. Opt. Lett. 33, 219–221 (2008). 44. Beaurepaire, E., Oheim, M. & Mertz, J. Ultra-deep two-photon fluorescence excitation in turbid media. Opt. Commun. 188, 25–29 (2001). 45. Ohem, M., Beaurepaire, E., Chaigneau, E., Mertz, J. & Charpak, S. Two￾photon microsscopy in brain tissue: Parameters influencing the imaging depth. J. Neurosci. Meth. 111, 29–37 (2001). 46. Buehler, C., Kim, K. H., Dong, C. Y., Masters, B. & So, P. T. C. Innovations in two-photon deep tissue microscopy. Eng. Med. Biol. Mag. 18, 23–30 (1999). 47. Kobat, D., Horton, N. G. & Xu, C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 16, 106014 (2011). 48. Balu, M. et al. Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media. J. Biomed. Opt. 14, 010508 (2009). 49. Chu, S. W. et al. Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser. Opt. Lett. 26, 1909–1911 (2001). 50. Levene, M. J., Dombeck, D. A., Kasischke, K. A., Molloy, R. P. & Webb, W. W. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 91, 1908–1912 (2004). 51. Jung, W. et al. Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy. Opt. Lett. 33, 1324–1326 (2008). 52. Chia, S. H. et al. Miniaturized video-rate epi-third-harmonic-generation fiber-microscope. Opt. Express 18, 17382–17391 (2010). 53. Saar, B. G., Johnston, R. S., Freudiger, C. W., Xie, X. S. & Seibel, E. J. Coherent Raman scanning fiber endoscopy. Opt. Lett. 36, 2396–2398 (2011). 54. Rivera, D. R., Brown, C. M., Ouzounov, D. G., Webb, W. W. & Xu, C. Multifocal multiphoton endoscope. Opt. Lett. 37, 1349–1351 (2012). 55. Martini, J. et al. Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time. J. Struct. Biol. 158, 401–409 (2007). 56. Chen, Z., Wei, L., Zhu, X. & Min, W. Extending the fundamental imaging￾depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores. Opt. Express 20, 18525–18536 (2012). 57. Cheng, P. C. et al. Highly efficient upconverters for multiphoton fluorescence microscopy. J. Microsc. 189, 199–212 (1998). 58. Extermann, J. et al. Nanodoublers as deep imaging markers for multi-photon microscopy. Opt. Express 17, 15342–15349 (2009). 59. Zinter, J. P. & Levene, M. J. Maximizing fluorescence collection efficiency in multiphoton microscopy. Opt. Express 19, 15348–15362 (2011). 60. Amir, W. et al. Simultaneous imaging of multiple focal planes using a two￾photon scanning microscope. Opt. Lett. 32, 1731–1733 (2007). 61. Carriles, R., Sheetz, K. E., Hoover, E. E., Squier, J. A. & Barzda, V. Simultaneous multifocal, multiphoton, photon counting microscopy. Opt. Express 16, 10364–10371 (2008). 62. Benninger, R. K. P., Ashby, W. J., Ring, E. A. & Piston, D. W. Single-photon￾counting detector for increased sensitivity in two-photon laser scanning microscopy. Opt. Lett. 33, 2895–2897 (2008). 63. Sandkuijl, D., Cisek, R., Major, A. & Barzda, V. Differential microscopy for fluorescence-detected nonlinear absorption linear anisotropy based on a staggered two-beam femtosecond Yb:KGW oscillator. Biomed. Opt. Express 1, 895–901 (2010). 64. Sherman, L., Ye, J. Y., Albert, O. & Norris, T. B. Adaptive correction of depth￾induced aberrations in multiphoton scanning microscopy using a deformable mirror. J. Microsc. 206, 65–71 (2002). 65. Neil, M. A. A. et al. Adaptive aberration correction in a two-photon microscope. J. Microsc. 200, 105–108 (2000). 66. Albert, O., Sherman, L., Mourou, G. & Norris, T. B. Smart microscope: An adaptive optics learning system for aberration correction in multiphoton confocal microscopy. Opt. Lett. 25, 52–54 (2000). 67. Booth, M. J., Neil, M. A. A., Juškaitis, R. & Wilson, T. Adaptive aberration correction in a confocal microscope. Proc. Natl Acad. Sci. USA 99, 5788–5792 (2002). 68. Ji, N., Milkie, D. & Betzig, E. Adaptive optics via pupil segmentation for high￾resolution imaging in biological tissues. Nat. Methods 7, 141–147 (2009). 69. Leray, A. & Mertz, J. Rejection of two-photon fluorescence background in thick tissues by differential aberration imaging. Opt. Express 14, 10565–10573 (2006). 70. Girkin, J. M., Poland, S. & Wright, A. J. Adaptive optics for deeper imaging of biological samples. Curr. Opin. Biotechnol. 20, 106–110 (2009). 71. Facomprez, A., Beaurepaire, E. & Débarre, D. Accuracy of correction in modal sensorless adaptive optics. Opt. Express 20, 2598–2612 (2012). 72. Bewersdorf, J., Pick, R. & Hell, S. W. Multifocal multiphoton microscopy. Opt. Lett. 23, 655–657 (1998). 73. Buist, A. H., Müller, M., Squier, J. & Brakenhoff, G. J. Real time two-photon absorption microscopy using multi point excitation. J. Microsc. 192, 217–226 (1998). 74. Straub, M. & Hell, S. W. Multifocal multiphoton microscopy: A fast and efficient tool for 3-D fluorescence imaging. Bioimaging 6, 177–185 (1998). 75. Egner, A. & Hell, S. W. Time multiplexing and parallelization in multifocal multiphoton microscopy. J. Opt. Soc. Am. A 17, 1192–201 (2000). 76. Nielsen, T., Fricke, M., Hellweg, D. & Andresen, P. High efficiency beam splitter for multifocal multiphoton microscopy. J. Microsc. 201, 368–376 (2001). 77. Bahlmann, K. et al. Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz. Opt. Express 15, 10991–10998 (2007). 78. Niesner, R., Andresen, V., Neumann, J., Spiecker, H. & Gunzer, M. The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging. Biophys. J. 93, 2519–2529 (2007). 79. Kim, K. H. et al. Multifocal multiphoton microscopy based on multianode photomultiplier tubes. Opt. Express 15, 11658–11678 (2007). 80. Lee, A. M. D. et al. In vivo video rate multiphoton microscopy imaging of human skin. Opt. Lett. 36, 2865–2867 (2011). 81. Fan, G., Fujisaki, H., Miyakawi, A., Tsien, R. & Ellisman, M. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with chameleons. Biophys. J. 76, 2412–2420 (1999). 82. Veilleux, I., Spencer, J. A., Biss, D. P., Côtè, D. & Lin, C. P. In vivo cell tracking with video rate multimodality laser scanning microscopy. IEEE J. Sel. Top. Quant. Electron. 14, 10–18 (2008). 83. Grewe, B. F., Voigt, F. F., van’t Hoff, M. & Helmchen, F. Fast two-layer two￾photon imaging of neuronal cell populations using an electrically tunable lens. Biomed. Opt. Express 2, 2035–2046 (2011). 84. Bullen, A., Patel, S. & Saggau, P. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators. Biophys. J. 73, 477–491 (1997). 85. Shao, Y. et al. Ultrafast, large-field multiphoton microscopy based on an acousto-optic deflector and a spatial light modulator. Opt. Lett. 37, 2532–2534 (2012). 86. Saloméa, R. et al. Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. J. Neurosci. Meth. 154, 161–74 (2006). 87. Reddy, G. D., Kelleher, K., Fink, R. & Saggau, P. Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nature Neurosci. 11, 713–720 (2008). 88. Koenig, K., Liang, H., Berns, M. & Tromberg, B. J. Cell damage in near￾infrared multimode optical traps as a result of multiphoton absorption. Opt. Lett. 21, 1090–1092 (1996). 89. Kirkby, P. A., Nadella, K. M. N. S. & Silver, R. A. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy. Opt. Express 18, 13721–13745 (2010). 90. Kremer, Y. et al. A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view. Opt. Express 16, 10066–10076 (2008). 91. Botcherby, E. J. et al. Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates. Proc. Natl Acad. Sci. USA 109, 2919–2924 (2012). 92. Brakenhoff, G. J. et al. Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system. J. Microsc. 181, 253–259 (1996). 93. Oron, D., Tal, E. & Silberberg, Y. Scanningless depth-resolved microscopy. Opt. Express 13, 1468–1476 (2005). 94. Zhu, G., van Howe, J., Durst, M., Zipfel, W. R. & Xu, C. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express 13, 2153–2159 (2005). REVIEW ARTICLES NATURE PHOTONICS DOI: 10.1038/NPHOTON.2013.361
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有