al Joumal of Heat and Moss Transer 015)-109 109 116]PX Yu..Qin.Zhen F.Tian,Numerical inw 1331 14 A167416 Mate 24020141R820 eda ns] e2wa,o7oegomecddtm5wePhenometg4208i 351 ed by [19]NI Wak I36 on 39 tion in 139 241Huan ion in in gen Wak ama./ tgaioofnae Heat Mass 271 1281LW on.and lo .ZP. n e 129] 3822 va LB.Wan ct al Nu 242 a sq Adv.Mec et al.Nu erical co [16] P.X. Yu, J.X. Qiu, Q. Qin, Zhen F. Tian, Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field, Int. J. Heat Mass Transfer 67 (2013) 1131–1144. [17] M. Sheikholeslami, M. Gorji Bandpy, R. Ellahi, Mohsan Hassan, Soheil Soleimani, Effects of MHD on Cu–water nanofluid flow and heat transfer by means of CVFEM, J. Magn. Magn. Mater. 349 (2014) 188–200. [18] T. Tagawa, H. Ozoe, Convective and diffusive phenomena of air in a vertical cylinder under strong magnetic field, Numer. Heat Transfer Part B 41 (2002) 1– 14. [19] N.I. Wakayama, A. Yabe, Magnetic control of thermal convection in electrically non-conducting or low conducting paramagnetic fluids, Int. J. Heat Mass Transfer 44 (2001) 3043–3052. [20] D. Braithwaite, E. Beaugnon, R. Tournier, Magnetically controlled convection in a paramagnetic fluid, Nature 354 (1991) 134–136. [21] J.R. Carruthers, R. Wolfe, Magnetothermal convection in insulation paramagnetic fluids, J. Appl. Phys. 39 (1968) 5718–5722. [22] J. Huang, B.F. Edwards, D.D. Gray, Magnetic control of convection in nonconducting paramagnetic fluids, Phys. Rev. E 57 (1998) R29-E31. [23] J. Huang, D.D. Gray, B.F. Edwards, Thermoconvective instability of paramagnetic fluids in a nonuniform magnetic field, Phys. Rev. E 57 (1998) 5564–5571. [24] J. Huang, D.D. Gray, B.F. Edwards, Magnetic control of convection in nonconducting diamagnetic fluids, Phys. Rev. E 58 (1998) 5164–5167. [25] D.D. Gray, J. Huang, B.F. Edwards, Two dimensional magnetothermal plumes, Int. J. Eng. Sci. 39 (2001) 1837–1861. [26] J. Qi, N.I. Wakayama, A. Yabe, Attenuation of natural convection by magnetic force in electro-nonconducting fluids media, J. Cryst. Growth 204 (1999) 408– 412. [27] J. Qi, N.I. Wakayama, A. Yabe, Magnetic control of thermal convection in electrically non-conducting or low conducting paramagnetic fluids, Int. J. Heat Mass Transfer 44 (2001) 3043–3052. [28] L.B. Wang, N.I. Wakayama, Control of natural convection in non- and lowconducting diamagnetic fluids in a cubical enclosure using inhomogeneous magnetic fields with different directions, Chem. Eng. Sci. 57 (2002) 1867– 1876. [29] R. Shigemitsu, T. Tagawa, H. Ozoe, Numerical computation for natural convection of air in a cubic enclosure under combination of magnetizing and gravitational forces, Numer. Heat Transfer Part A 43 (2003) 449–463. [30] M. Kaneda, T. Tagawa, H. Ozoe, Convection induced by a cusp-shaped magnetic field for air in a cube heated from above and cooled from below, J. Heat Transfer Trans. ASME 124 (2002) 17–25. [31] M. Akamatsu, M. Higano, Y. Takahashi, et al., Numerical computation on the control of aerial flow by the magnetizing force in gravitational and nongravitational fields, Numer. Heat Transfer Part A 43 (2003) 9–19. [32] M. Akamatsu, M. Higano, Y. Takahashi, et al., Numerical prediction on heat transfer phenomenon in paramagnetic and diamagnetic fluids under a vertical magnetic field gradient, IEEE Trans. Appl. Superconduct. 14 (2004) 1674–1681. [33] E. Fornalik, P. Filar, T. Tagawa, et al., Experimental study on the magnetic convection in a vertical cylinder, Exp. Therm. Fluid Sci. 29 (2005) 971–980. [34] P. Filar, E. Fornalik, M. Kaneda, Three-dimensional numerical computation for magnetic convection of air inside a cylinder heated and cooled isothermally from a side wall, Int. J. Heat Mass Transfer 48 (2005) 1858–1867. [35] L.J. Yang, J.X. Ren, Y.Z. Song, et al., Free convection of a gas induced by a magnetic quadrupole field, J. Magn. Magn. Mater. 261 (2003) 377–384. [36] L.J. Yang, J.X. Ren, Y.Z. Song, et al., Convection heat transfer enhancement of air in a rectangular duct by application of a magnetic quadrupole field, Int. J. Eng. Sci. 42 (2004) 491–507. [37] T.P. Bednarz, C.W. Lei, J.C. Patterson, et al., Effects of a transverse, horizontal magnetic field on natural convection of a paramagnetic fluid in a cube, Int. J. Therm. Sci. 48 (2009) 26–33. [38] T.P. Bednarz, E. Fornalik, H. Ozoe, et al., Influence of a horizontal magnetic field on the natural convection of paramagnetic fluid in a cube heated and cooled from two vertical side walls, Int. J. Therm. Sci. 47 (2008) 668–679. [39] T.P. Bednarz, T. Tagawa, M. Kaneda, et al., Magnetic and gravitational convection of air with a coil inclined around the X axis, Numer. Heat Transfer Part A 46 (2004) 99–113. [40] T.P. Bednarz, T. Tagawa, M. Kaneda, et al., Convection of air in a cubic enclosure with an electric coil inclined in general orientations, Fluid Dyn. Res. 36 (2005) 91–106. [41] Q.W. Wang, M. Zeng, Z.P. Huang, et al., Numerical investigation of natural convection in an inclined enclosure filled with porous medium under magnetic field, Int. J. Heat Mass Transfer 50 (2007) 3684–3689. [42] M. Zeng, Q.W. Wang, H. Ozoe, et al., Natural convection of diamagnetic fluid in an enclosure filled with porous medium magnetic field, Prog. Comput. Fluid Dyn. 9 (2009) 77–85. [43] M. Zeng, Q.W. Wang, Z.P. Huang, et al., Numerical investigation of natural convection in an enclosure filled with porous medium under magnetic field, Numer. Heat Transfer Part A 52 (2007) 959–971. [44] N.J. Salman Ahmeda, Irfan Anjum Badruddina, Jeevan Kanesan, et al., Study of mixed convection in an annular vertical cylinder filled with saturated porous medium, using thermal non-equilibrium model, Int. J. Heat Mass Transfer 54 (2011) 3822–3825. [45] K.W. Song, T. Tagawa, L.B. Wang, et al., Numerical investigation for the modeling of the magnetic buoyancy force during the natural convection of air in a square enclosure, Adv. Mech. Eng. (2014) 1–11. C. Jiang et al. / International Journal of Heat and Mass Transfer 91 (2015) 98–109 109